矩阵求解好例子

矩阵变换好例子

要将表达式
arg ⁡ min ⁡ P ( ⟨ Y 1 , X − P H − E V ⟩ + μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 ) \arg\min_{\mathbf{P}} \left( \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle + \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2 \right) argPmin(Y1,XPHEV+2μ∣∣XPHEVF2)
重写为
arg ⁡ min ⁡ P μ 2 ∣ ∣ X − P H − E V + 1 μ Y 1 ∣ ∣ F 2 , \arg\min_{\mathbf{P}} \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V + \frac{1}{\mu}\mathbf{Y}_1||_F^2, argPmin2μ∣∣XPHEV+μ1Y1F2,

可以利用矩阵内积的性质以及范数的定义来完成这个转换。

首先,考虑矩阵内积 ⟨ A , B ⟩ \langle \mathbf{A}, \mathbf{B} \rangle A,B 可以被定义为 trace ( A T B ) \text{trace}(\mathbf{A}^T \mathbf{B}) trace(ATB) 或者等价地 ∑ i , j A i j B i j \sum_{i,j} A_{ij} B_{ij} i,jAijBij。对于给定的向量或矩阵 A \mathbf{A} A,有以下关系:
⟨ A , A ⟩ = ∣ ∣ A ∣ ∣ F 2 . \langle \mathbf{A}, \mathbf{A} \rangle = ||\mathbf{A}||_F^2. A,A=∣∣AF2.

具体展开原始表达式中的两部分:

  1. 矩阵内积项 ⟨ Y 1 , X − P H − E V ⟩ \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle Y1,XPHEV
  2. 范数平方项 μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2 2μ∣∣XPHEVF2

把这两部分组合起来,并且加上一个恒等于零的项 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 − 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 - \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 2μ1∣∣Y1F22μ1∣∣Y1F2(即加0),这样不会改变原问题的解,但可以帮助重新组织表达式:
⟨ Y 1 , X − P H − E V ⟩ + μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 + 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 − 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 . \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle + \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2 + \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 - \frac{1}{2\mu}||\mathbf{Y}_1||_F^2. Y1,XPHEV+2μ∣∣XPHEVF2+2μ1∣∣Y1F22μ1∣∣Y1F2.

接下来,利用范数的性质 ∣ ∣ A ∣ ∣ F 2 = ⟨ A , A ⟩ ||\mathbf{A}||_F^2 = \langle \mathbf{A}, \mathbf{A} \rangle ∣∣AF2=A,A,我们可以将上述表达式改写为:
⟨ Y 1 , X − P H − E V ⟩ + 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 + μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 − 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 . \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle + \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 + \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2 - \frac{1}{2\mu}||\mathbf{Y}_1||_F^2. Y1,XPHEV+2μ1∣∣Y1F2+2μ∣∣XPHEVF22μ1∣∣Y1F2.

然后,利用矩阵内积的线性性质和范数的性质,可以进一步合并前两项:
⟨ Y 1 , X − P H − E V ⟩ + 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 = 1 2 μ ( 2 μ ⟨ Y 1 , X − P H − E V ⟩ + ∣ ∣ Y 1 ∣ ∣ F 2 ) . \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle + \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 = \frac{1}{2\mu} \left( 2\mu \langle \mathbf{Y}_1, \mathbf{X} - \mathbf{PH} - \mathbf{E}_V \rangle + ||\mathbf{Y}_1||_F^2 \right). Y1,XPHEV+2μ1∣∣Y1F2=2μ1(2μY1,XPHEV+∣∣Y1F2).

由于 ⟨ A , B ⟩ = ⟨ B , A ⟩ \langle \mathbf{A}, \mathbf{B} \rangle = \langle \mathbf{B}, \mathbf{A} \rangle A,B=B,A,上式可以写作:
1 2 μ ( ∣ ∣ Y 1 ∣ ∣ F 2 + 2 μ ⟨ X − P H − E V , Y 1 ⟩ ) . \frac{1}{2\mu} \left( ||\mathbf{Y}_1||_F^2 + 2\mu \langle \mathbf{X} - \mathbf{PH} - \mathbf{E}_V, \mathbf{Y}_1 \rangle \right). 2μ1(∣∣Y1F2+2μXPHEV,Y1).

∣ ∣ A + B ∣ ∣ F 2 = ∣ ∣ A ∣ ∣ F 2 + 2 < A , B > + ∣ ∣ B ∣ ∣ F 2 ||\mathbf{A} + \mathbf{B}||_{F}^2=||\mathbf{A}||_{F}^2 + 2<A,B> + ||\mathbf{B}||_{F}^2 ∣∣A+BF2=∣∣AF2+2<A,B>+∣∣BF2

因此,根据范数的性质,可以得到:
1 2 μ ( ∣ ∣ Y 1 ∣ ∣ F 2 + 2 μ ⟨ X − P H − E V , Y 1 ⟩ ) + μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 = 1 2 μ ( ∣ ∣ Y 1 ∣ ∣ F 2 + 2 μ ⟨ X − P H − E V , Y 1 ⟩ + μ 2 ∣ ∣ X − P H − E V ∣ ∣ F 2 ) = 1 2 μ ∣ ∣ Y 1 + μ ( X − P H − E V ) ∣ ∣ F 2 . \frac{1}{2\mu} \left( ||\mathbf{Y}_1||_F^2 + 2\mu \langle \mathbf{X} - \mathbf{PH} - \mathbf{E}_V, \mathbf{Y}_1 \rangle \right)+\frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2\\ = \frac{1}{2\mu} \left( ||\mathbf{Y}_1||_F^2 + 2\mu \langle \mathbf{X} - \mathbf{PH} - \mathbf{E}_V, \mathbf{Y}_1 \rangle + \mu^2 ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V||_F^2 \right)\\ =\frac{1}{2\mu} ||\mathbf{Y}_1 + \mu (\mathbf{X} - \mathbf{PH} - \mathbf{E}_V)||_F^2. 2μ1(∣∣Y1F2+2μXPHEV,Y1)+2μ∣∣XPHEVF2=2μ1(∣∣Y1F2+2μXPHEV,Y1+μ2∣∣XPHEVF2)=2μ1∣∣Y1+μ(XPHEV)F2.

因此,整个表达式变为:
1 2 μ ∣ ∣ Y 1 + μ ( X − P H − E V ) ∣ ∣ F 2 − 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 . \frac{1}{2\mu} ||\mathbf{Y}_1 + \mu (\mathbf{X} - \mathbf{PH} - \mathbf{E}_V)||_F^2 - \frac{1}{2\mu}||\mathbf{Y}_1||_F^2. 2μ1∣∣Y1+μ(XPHEV)F22μ1∣∣Y1F2.

注意到 − 1 2 μ ∣ ∣ Y 1 ∣ ∣ F 2 - \frac{1}{2\mu}||\mathbf{Y}_1||_F^2 2μ1∣∣Y1F2 是与 P \mathbf{P} P 无关的常数项,所以它不影响优化问题的结果。因此,我们可以忽略这一项,最终得到:
1 2 μ ∣ ∣ Y 1 + μ ( X − P H − E V ) ∣ ∣ F 2 \frac{1}{2\mu} ||\mathbf{Y}_1 + \mu (\mathbf{X} - \mathbf{PH} - \mathbf{E}_V)||_F^2 2μ1∣∣Y1+μ(XPHEV)F2

为了简化形式,我们可以提取公共因子 μ 2 \frac{\mu}{2} 2μ,并利用范数的性质 α ∣ ∣ A ∣ ∣ F 2 = ∣ ∣ α A ∣ ∣ F 2 \alpha ||\mathbf{A}||_F^2 = ||\sqrt{\alpha} \mathbf{A}||_F^2 α∣∣AF2=∣∣α AF2,从而得到:
arg ⁡ min ⁡ P μ 2 ( ∣ ∣ 1 μ Y 1 + ( X − P H − E V ) ∣ ∣ F 2 ) . \arg\min_{\mathbf{P}} \frac{\mu}{2} \left( ||\frac{1}{\mu}\mathbf{Y}_1 + (\mathbf{X} - \mathbf{PH} - \mathbf{E}_V)||_F^2 \right). argPmin2μ(∣∣μ1Y1+(XPHEV)F2).

这就是所求的重写形式:
arg ⁡ min ⁡ P μ 2 ∣ ∣ X − P H − E V + 1 μ Y 1 ∣ ∣ F 2 . \arg\min_{\mathbf{P}} \frac{\mu}{2} ||\mathbf{X} - \mathbf{PH} - \mathbf{E}_V + \frac{1}{\mu}\mathbf{Y}_1||_F^2. argPmin2μ∣∣XPHEV+μ1Y1F2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值