对称正定(SPD)黎曼流形上的核稀疏子空间聚类(KSSCR)
引言
对称正定矩阵
(Symmetric Positive Definite matrices, SPD)在图像处理、计算机视觉和模式识别等领域有着广泛的应用,因为它们能够有效地表示图像协方差、纹理特征和其他统计特性。
然而,SPD矩阵构成了一个非欧几里得空间——黎曼流形
,这使得在传统欧式空间中使用的聚类算法(如K均值、PCA等)不再适用。
因此,开发在SPD黎曼流形上工作的聚类算法成为了一个重要的研究方向。
SPD黎曼流形
SPD矩阵构成的空间是一个特殊的黎曼流形
,其中矩阵之间的距离不是通过欧氏距离来衡量,而是通过黎曼度量来定义
。
在SPD黎曼流形上,距离和几何运算(如平均值)都需要遵循特定的规则。
核稀疏子空间聚类(KSSCR)
核稀疏子空间聚类(KSSCR)是稀疏子空间聚类(SSC)的扩展,它不仅利用核方法处理非线性关系,而且还能在SPD黎曼流形上运行,以适应SPD矩阵的特殊性质。
KSSCR的主要目标是在SPD黎曼流形上找到数据点的稀疏表示,然后使用这些表示进行聚类。
核函数
在KSSCR中,我们使用特定的核函数
来衡量SPD矩阵之间的相似度
,这个核函数必须能够捕捉到黎曼流形上的几何结构。
一个常用的核函数是基于Log-Euclidean度量的核函数,例如:
k ( A , B ) = exp ( − ∥ log ( A − 1 2 B A − 1 2 ) ∥ F 2 2 σ 2 ) k(A, B) = \exp\left(-\frac{\| \log(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}) \|_F^2}{2\sigma^2}\right) k(A,B)=exp(−2σ2∥log(A−21BA−21)∥F2)
这里:
-
A
A
A 和
B
B
B 是
SPD矩阵;
-
log
(
⋅
)
\log(\cdot)
log(⋅) 是矩阵对数,
用于将SPD矩阵转换到对数欧几里得空间,这使得我们能够在欧氏空间中操作;
- ∥ ⋅ ∥ F \|\cdot\|_F ∥⋅∥F 是Frobenius范数;
- σ \sigma σ 是核函数的带宽参数,控制着相似度的衰减速度。
目标函数
KSSCR的目标是找到一个稀疏表示矩阵
Z
\mathbf{Z}
Z,使得每个数据点(SPD矩阵)可以被表示为其在SPD黎曼流形上的其他数据点的线性组合
。目标函数可以表示为:
min Z ∑ i = 1 N ∥ A i − ∑ j = 1 N k ( A i , A j ) z i j A j ∥ R 2 + λ ∑ i = 1 N ∑ j = 1 N ∣ z i j ∣ \min_{\mathbf{Z}} \sum_{i=1}^N \left\| A_i - \sum_{j=1}^N k(A_i, A_j) z_{ij} A_j \right\|_{\mathcal{R}}^2 + \lambda \sum_{i=1}^N \sum_{j=1}^N |z_{ij}| Zmini=1∑N Ai−j=1∑Nk(Ai,Aj)zijAj R2+λi=1∑Nj=1∑N∣zij∣
这里:
-
A
i
A_i
Ai 和
A
j
A_j
Aj 是
SPD矩阵;
-
∥
⋅
∥
R
\left\| \cdot \right\|_{\mathcal{R}}
∥⋅∥R 是
在SPD黎曼流形上的距离度量;
-
Z
\mathbf{Z}
Z 是
稀疏表示矩阵;
- λ \lambda λ 是正则化参数,用于控制稀疏性。
由于在SPD黎曼流形上计算直接的距离和线性组合非常复杂,我们通常会将问题转化为在Log-Euclidean空间中操作,再将结果投影回SPD黎曼流形上。
优化过程
KSSCR的优化过程涉及到在Log-Euclidean空间中寻找稀疏表示矩阵
Z
\mathbf{Z}
Z,然后在SPD黎曼流形上重构数据点。
这一过程可能需要使用专门的优化算法,例如基于梯度下降的算法,来处理非欧氏空间的约束。
聚类
一旦找到稀疏表示矩阵 Z \mathbf{Z} Z,我们可以通过谱聚类或其他适当的聚类算法来确定数据点的分组。
在SPD黎曼流形上,这通常涉及到构建一个相似度矩阵
,然后使用这个矩阵来进行聚类。
结论
KSSCR是一种专门针对SPD矩阵
的聚类方法,它利用核方法和稀疏表示的原理,结合SPD黎曼流形的几何特性,实现了在复杂数据结构上的有效聚类。
通过在Log-Euclidean空间中进行操作,KSSCR能够克服在非欧氏空间中直接进行计算的困难,从而在图像和视觉数据分析中展现出强大的性能。