自我表达子空间图构建方法的系数矩阵求解过程

自我表达子空间图构建方法的系数矩阵求解过程

给定的目标函数是:
S ^ = arg ⁡ min ⁡ S ∑ i = 1 m λ ∥ H i − S H i ∥ F 2 + β ∥ S ∥ F 2 \hat{\mathbf{S}} = \arg\min_{\mathbf{S}} \sum_{i=1}^m \lambda \left\|\mathbf{H}_i - \mathbf{S}\mathbf{H}_i\right\|_{\mathrm{F}}^2 + \beta \left\|\mathbf{S}\right\|_{\mathrm{F}}^2 S^=argSmini=1mλHiSHiF2+βSF2

这里, H i \mathbf{H}_i Hi 是数据点或子空间的表示, S \mathbf{S} S 是我们要优化的自我表达矩阵, λ \lambda λ β \beta β 是正则化参数。我们的目标是最小化这个函数。

为了求解 S \mathbf{S} S,我们可以对目标函数关于 S \mathbf{S} S 求导,并令导数等于零来找到最小值点。首先,让我们简化目标函数:

J ( S ) = λ ∑ i = 1 m ∥ H i − S H i ∥ F 2 + β ∥ S ∥ F 2 J(\mathbf{S}) = \lambda \sum_{i=1}^m \left\|\mathbf{H}_i - \mathbf{S}\mathbf{H}_i\right\|_{\mathrm{F}}^2 + \beta \left\|\mathbf{S}\right\|_{\mathrm{F}}^2 J(S)=λi=1mHiSHiF2+βSF2

可以进一步写为:
J ( S ) = λ ∑ i = 1 m tr ⁡ ( ( H i − S H i ) T ( H i − S H i ) ) + β tr ⁡ ( S T S ) J(\mathbf{S}) = \lambda \sum_{i=1}^m \operatorname{tr}((\mathbf{H}_i - \mathbf{S}\mathbf{H}_i)^T (\mathbf{H}_i - \mathbf{S}\mathbf{H}_i)) + \beta \operatorname{tr}(\mathbf{S}^T \mathbf{S}) J(S)=λi=1mtr((HiSHi)T(HiSHi))+βtr(STS)

利用迹的性质(如 tr ⁡ ( A T B ) = tr ⁡ ( B T A ) \operatorname{tr}(\mathbf{A}^T \mathbf{B}) = \operatorname{tr}(\mathbf{B}^T \mathbf{A}) tr(ATB)=tr(BTA) tr ⁡ ( A + B ) = tr ⁡ ( A ) + tr ⁡ ( B ) \operatorname{tr}(\mathbf{A} + \mathbf{B}) = \operatorname{tr}(\mathbf{A}) + \operatorname{tr}(\mathbf{B}) tr(A+B)=tr(A)+tr(B)),我们得到:
J ( S ) = λ ∑ i = 1 m tr ⁡ ( H i T H i − 2 H i T S H i + H i T S T S H i ) + β tr ⁡ ( S T S ) J(\mathbf{S}) = \lambda \sum_{i=1}^m \operatorname{tr}(\mathbf{H}_i^T \mathbf{H}_i - 2\mathbf{H}_i^T \mathbf{S} \mathbf{H}_i + \mathbf{H}_i^T \mathbf{S}^T \mathbf{S} \mathbf{H}_i) + \beta \operatorname{tr}(\mathbf{S}^T \mathbf{S}) J(S)=λi=1mtr(HiTHi2HiTSHi+HiTSTSHi)+βtr(STS)

这里注意,tr(AB) = tr(BA)

J ( S ) J(\mathbf{S}) J(S) 关于 S \mathbf{S} S 求导,注意到 tr ⁡ ( A B C ) \operatorname{tr}(\mathbf{A} \mathbf{B} \mathbf{C}) tr(ABC) B \mathbf{B} B 的导数是 C A T + A C T \mathbf{C} \mathbf{A}^T + \mathbf{A} \mathbf{C}^T CAT+ACT A \mathbf{A} A C \mathbf{C} C 是常量时,我们有:
∂ J ∂ S = − 2 λ ∑ i = 1 m H i H i T + 2 λ ∑ i = 1 m S H i H i T + 2 β S \frac{\partial J}{\partial \mathbf{S}} = -2\lambda \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T + 2\lambda \sum_{i=1}^m \mathbf{S} \mathbf{H}_i \mathbf{H}_i^T + 2\beta \mathbf{S} SJ=2λi=1mHiHiT+2λi=1mSHiHiT+2βS

设导数为0,得到:
− 2 λ ∑ i = 1 m H i H i T + 2 λ ∑ i = 1 m S H i H i T + 2 β S = 0 -2\lambda \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T + 2\lambda \sum_{i=1}^m \mathbf{S} \mathbf{H}_i \mathbf{H}_i^T + 2\beta \mathbf{S} = 0 2λi=1mHiHiT+2λi=1mSHiHiT+2βS=0

整理后得到:
λ ∑ i = 1 m S H i H i T + β S = λ ∑ i = 1 m H i H i T \lambda \sum_{i=1}^m \mathbf{S} \mathbf{H}_i \mathbf{H}_i^T + \beta \mathbf{S} = \lambda \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T λi=1mSHiHiT+βS=λi=1mHiHiT

S ( λ ∑ i = 1 m H i H i T + β I ) = λ ∑ i = 1 m H i H i T \mathbf{S} \left( \lambda \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T + \beta \mathbf{I} \right) = \lambda \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T S(λi=1mHiHiT+βI)=λi=1mHiHiT

假设 C = ∑ i = 1 m H i H i T \mathbf{C} = \sum_{i=1}^m \mathbf{H}_i \mathbf{H}_i^T C=i=1mHiHiT,则上式可以写作:
S ( λ C + β I ) = λ C \mathbf{S} (\lambda \mathbf{C} + \beta \mathbf{I}) = \lambda \mathbf{C} S(λC+βI)=λC

因此,解得:
S ^ = ( λ C + β I ) − 1 λ C \mathbf{\hat{S}} = (\lambda \mathbf{C} + \beta \mathbf{I})^{-1} \lambda \mathbf{C} S^=(λC+βI)1λC

由于 λ \lambda λ 只是一个比例因子,我们可以将其提取出来,得到最终形式:
S ^ = ( C + β λ I ) − 1 C \mathbf{\hat{S}} = \left( \mathbf{C} + \frac{\beta}{\lambda} \mathbf{I} \right)^{-1} \mathbf{C} S^=(C+λβI)1C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值