矩阵的 Frobenius 范数及其求偏导法则2

注意:这里考虑 矩阵 C 是对称矩阵。

计算 ∂ tr ( Z T Z C ) ∂ Z \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} Ztr(ZTZC) 需要使用矩阵微分的一些基本规则。这里 Z Z Z 是一个 n × m n \times m n×m 的矩阵,而 C C C 是一个 m × m m \times m m×m 的方阵。我们希望找到这个迹(trace)函数对 Z Z Z 的导数。

使用矩阵微分的基本规则

  1. 迹的性质:对于任意两个矩阵 A A A B B B,如果乘积 A B AB AB 是方阵,则 tr ( A B ) = tr ( B A ) \text{tr}(AB) = \text{tr}(BA) tr(AB)=tr(BA)

  2. 矩阵微分:对于矩阵 X X X Y Y Y,有 ∂ tr ( X Y ) ∂ X = Y T \frac{\partial \text{tr}(XY)}{\partial X} = Y^T Xtr(XY)=YT

  3. 链式法则:我们可以将 tr ( Z T Z C ) \text{tr}(Z^T Z C) tr(ZTZC) 看作是多个函数的组合,并应用链式法则来求导。

具体计算

我们需要计算 ∂ tr ( Z T Z C ) ∂ Z \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} Ztr(ZTZC)。为了简化问题,我们可以利用迹函数的性质和矩阵微分的基本规则。

首先,定义 F = Z T Z C F = Z^T Z C F=ZTZC,那么我们要求的是 ∂ tr ( F ) ∂ Z \frac{\partial \text{tr}(F)}{\partial Z} Ztr(F)

∂ tr ( Z T Z C ) ∂ Z \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} Ztr(ZTZC)

我们可以使用以下步骤来计算:

  1. 引入辅助变量
    F = Z T Z C F = Z^T Z C F=ZTZC
    我们需要计算 ∂ tr ( F ) ∂ Z \frac{\partial \text{tr}(F)}{\partial Z} Ztr(F)

  2. 使用迹函数的性质
    由于 tr ( Z T Z C ) = tr ( C Z T Z ) \text{tr}(Z^T Z C) = \text{tr}(C Z^T Z) tr(ZTZC)=tr(CZTZ),我们可以使用 tr ( A B ) = tr ( B A ) \text{tr}(AB) = \text{tr}(BA) tr(AB)=tr(BA) 的性质。

  3. 应用矩阵微分
    根据矩阵微分的基本规则,对于 X X X Y Y Y,有 ∂ tr ( X Y ) ∂ X = Y T \frac{\partial \text{tr}(XY)}{\partial X} = Y^T Xtr(XY)=YT

  4. 具体计算
    ∂ tr ( Z T Z C ) ∂ Z = ∂ tr ( C Z T Z ) ∂ Z \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} = \frac{\partial \text{tr}(C Z^T Z)}{\partial Z} Ztr(ZTZC)=Ztr(CZTZ)

    我们可以将 C Z T Z C Z^T Z CZTZ 视为 A Z T A Z^T AZT,其中 A = C Z T A = C Z^T A=CZT。然后应用矩阵微分规则:
    ∂ tr ( A Z T ) ∂ Z = ( A Z T ) T = Z A T \frac{\partial \text{tr}(A Z^T)}{\partial Z} = (A Z^T)^T = Z A^T Ztr(AZT)=(AZT)T=ZAT

代入 A = C Z T A = C Z^T A=CZT,我们得到:
∂ tr ( C Z T Z ) ∂ Z = Z ( C Z T ) T = Z C T \frac{\partial \text{tr}(C Z^T Z)}{\partial Z} = Z (C Z^T)^T = Z C^T Ztr(CZTZ)=Z(CZT)T=ZCT
由于 C C C 是一个 m × m m \times m m×m 的方阵, C T = C C^T = C CT=C。因此:
∂ tr ( Z T Z C ) ∂ Z = Z C + Z C = 2 Z C \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} = Z C + Z C = 2 Z C Ztr(ZTZC)=ZC+ZC=2ZC

  1. 最终结果

因此, ∂ tr ( Z T Z C ) ∂ Z \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} Ztr(ZTZC) 的结果是:
∂ tr ( Z T Z C ) ∂ Z = 2 Z C \frac{\partial \text{tr}(Z^T Z C)}{\partial Z} = 2 Z C Ztr(ZTZC)=2ZC

这里 Z Z Z 是一个 n × m n \times m n×m 的矩阵, C C C 是一个 m × m m \times m m×m 的方阵,最终结果是一个 n × m n \times m n×m 的矩阵。

重大案例:

为了对 Z Z Z 求偏导,我们需要分别对每一项求导,并将结果相加。给定的目标函数是:

min ⁡ Z ⟨ Y 1 , X − X Z − E X ⟩ + μ 1 2 ∥ X − X Z − E X ∥ F 2 + ⟨ Y 2 , Z − Z C − E Z ⟩ + μ 2 2 ∥ Z − Z C − E Z ∥ F 2 + ⟨ W , Z − G ⟩ + ρ 2 ∥ Z − G ∥ F 2 \min_{Z} \left\langle Y_1, X - XZ - E_X \right\rangle + \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 + \left\langle Y_2, Z - ZC - E_Z \right\rangle + \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 + \left\langle W, Z - G \right\rangle + \frac{\rho}{2} \|Z - G\|_F^2 ZminY1,XXZEX+2μ1XXZEXF2+Y2,ZZCEZ+2μ2ZZCEZF2+W,ZG+2ρZGF2

逐项求导

  1. 第一项: ⟨ Y 1 , X − X Z − E X ⟩ \left\langle Y_1, X - XZ - E_X \right\rangle Y1,XXZEX

    Z Z Z 求导:
    ∂ ∂ Z ⟨ Y 1 , X − X Z − E X ⟩ = − X T Y 1 \frac{\partial}{\partial Z} \left\langle Y_1, X - XZ - E_X \right\rangle = -X^T Y_1 ZY1,XXZEX=XTY1

  2. 第二项: μ 1 2 ∥ X − X Z − E X ∥ F 2 \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 2μ1XXZEXF2

    Z Z Z 求导:
    ∂ ∂ Z ( μ 1 2 ∥ X − X Z − E X ∥ F 2 ) = − μ 1 X T ( X − X Z − E X ) \frac{\partial}{\partial Z} \left( \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 \right) = -\mu_1 X^T (X - XZ - E_X) Z(2μ1XXZEXF2)=μ1XT(XXZEX)
    简化为:
    − μ 1 X T ( X − X Z − E X ) = − μ 1 X T X + μ 1 X T X Z + μ 1 X T E X -\mu_1 X^T (X - XZ - E_X) = -\mu_1 X^T X + \mu_1 X^T X Z + \mu_1 X^T E_X μ1XT(XXZEX)=μ1XTX+μ1XTXZ+μ1XTEX

  3. 第三项: ⟨ Y 2 , Z − Z C − E Z ⟩ \left\langle Y_2, Z - ZC - E_Z \right\rangle Y2,ZZCEZ

    Z Z Z 求导:
    ∂ ∂ Z ⟨ Y 2 , Z − Z C − E Z ⟩ = Y 2 − Y 2 C \frac{\partial}{\partial Z} \left\langle Y_2, Z - ZC - E_Z \right\rangle = Y_2 - Y_2 C ZY2,ZZCEZ=Y2Y2C

  4. 第四项: μ 2 2 ∥ Z − Z C − E Z ∥ F 2 \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 2μ2ZZCEZF2

    Z Z Z 求导:
    ∂ ∂ Z ( μ 2 2 ∥ Z − Z C − E Z ∥ F 2 ) = μ 2 ( I − C ) ( Z − Z C − E Z ) \frac{\partial}{\partial Z} \left( \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 \right) = \mu_2 (I - C) (Z - ZC - E_Z) Z(2μ2ZZCEZF2)=μ2(IC)(ZZCEZ)
    简化为:
    μ 2 ( I − C ) ( Z − Z C − E Z ) = μ 2 ( I − C ) Z − μ 2 ( I − C ) Z C − μ 2 ( I − C ) E Z \mu_2 (I - C) (Z - ZC - E_Z) = \mu_2 (I - C) Z - \mu_2 (I - C) ZC - \mu_2 (I - C) E_Z μ2(IC)(ZZCEZ)=μ2(IC)Zμ2(IC)ZCμ2(IC)EZ

  5. 第五项: ⟨ W , Z − G ⟩ \left\langle W, Z - G \right\rangle W,ZG

    Z Z Z 求导:
    ∂ ∂ Z ⟨ W , Z − G ⟩ = W \frac{\partial}{\partial Z} \left\langle W, Z - G \right\rangle = W ZW,ZG=W

  6. 第六项: ρ 2 ∥ Z − G ∥ F 2 \frac{\rho}{2} \|Z - G\|_F^2 2ρZGF2

    Z Z Z 求导:
    ∂ ∂ Z ( ρ 2 ∥ Z − G ∥ F 2 ) = ρ ( Z − G ) \frac{\partial}{\partial Z} \left( \frac{\rho}{2} \|Z - G\|_F^2 \right) = \rho (Z - G) Z(2ρZGF2)=ρ(ZG)

将所有导数相加

将上述各项的导数相加,我们得到:

∂ ∂ Z ( 目标函数 ) = − X T Y 1 − μ 1 X T ( X − X Z − E X ) + Y 2 − Y 2 C + μ 2 ( I − C ) ( Z − Z C − E Z ) + W + ρ ( Z − G ) \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = -X^T Y_1 - \mu_1 X^T (X - XZ - E_X) + Y_2 - Y_2 C + \mu_2 (I - C) (Z - ZC - E_Z) + W + \rho (Z - G) Z(目标函数)=XTY1μ1XT(XXZEX)+Y2Y2C+μ2(IC)(ZZCEZ)+W+ρ(ZG)

整理结果

将各项整理合并,得到最终的导数表达式:

∂ ∂ Z ( 目标函数 ) = − X T Y 1 − μ 1 X T X + μ 1 X T X Z + μ 1 X T E X + Y 2 − Y 2 C + μ 2 ( I − C ) Z − μ 2 ( I − C ) Z C − μ 2 ( I − C ) E Z + W + ρ Z − ρ G \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = -X^T Y_1 - \mu_1 X^T X + \mu_1 X^T X Z + \mu_1 X^T E_X + Y_2 - Y_2 C + \mu_2 (I - C) Z - \mu_2 (I - C) ZC - \mu_2 (I - C) E_Z + W + \rho Z - \rho G Z(目标函数)=XTY1μ1XTX+μ1XTXZ+μ1XTEX+Y2Y2C+μ2(IC)Zμ2(IC)ZCμ2(IC)EZ+W+ρZρG

进一步简化和整理:

∂ ∂ Z ( 目标函数 ) = ( μ 1 X T X + μ 2 ( I − C ) + ρ I ) Z − μ 1 X T X Z C − μ 2 ( I − C ) Z C − X T Y 1 + μ 1 X T E X + Y 2 − Y 2 C − μ 2 ( I − C ) E Z + W − ρ G \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = (\mu_1 X^T X + \mu_2 (I - C) + \rho I) Z - \mu_1 X^T X ZC - \mu_2 (I - C) ZC - X^T Y_1 + \mu_1 X^T E_X + Y_2 - Y_2 C - \mu_2 (I - C) E_Z + W - \rho G Z(目标函数)=(μ1XTX+μ2(IC)+ρI)Zμ1XTXZCμ2(IC)ZCXTY1+μ1XTEX+Y2Y2Cμ2(IC)EZ+WρG

最终结果可以写成:

∂ ∂ Z ( 目标函数 ) = ( μ 1 X T X + μ 2 ( I − C ) + ρ I ) Z − μ 1 X T X Z C − μ 2 ( I − C ) Z C − X T Y 1 + μ 1 X T E X + Y 2 − Y 2 C − μ 2 ( I − C ) E Z + W − ρ G \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = (\mu_1 X^T X + \mu_2 (I - C) + \rho I) Z - \mu_1 X^T X ZC - \mu_2 (I - C) ZC - X^T Y_1 + \mu_1 X^T E_X + Y_2 - Y_2 C - \mu_2 (I - C) E_Z + W - \rho G Z(目标函数)=(μ1XTX+μ2(IC)+ρI)Zμ1XTXZCμ2(IC)ZCXTY1+μ1XTEX+Y2Y2Cμ2(IC)EZ+WρG

这就是对 Z Z Z 求偏导后的结果。

下面是详细的求偏导步骤:

好的,我们来详细地逐步求解每一步的偏导数,并将结果整理在一起。给定的目标函数是:

min ⁡ Z ⟨ Y 1 , X − X Z − E X ⟩ + μ 1 2 ∥ X − X Z − E X ∥ F 2 + ⟨ Y 2 , Z − Z C − E Z ⟩ + μ 2 2 ∥ Z − Z C − E Z ∥ F 2 + ⟨ W , Z − G ⟩ + ρ 2 ∥ Z − G ∥ F 2 \min_{Z} \left\langle Y_1, X - XZ - E_X \right\rangle + \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 + \left\langle Y_2, Z - ZC - E_Z \right\rangle + \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 + \left\langle W, Z - G \right\rangle + \frac{\rho}{2} \|Z - G\|_F^2 ZminY1,XXZEX+2μ1XXZEXF2+Y2,ZZCEZ+2μ2ZZCEZF2+W,ZG+2ρZGF2

逐项求导

1. 第一项: ⟨ Y 1 , X − X Z − E X ⟩ \left\langle Y_1, X - XZ - E_X \right\rangle Y1,XXZEX

Z Z Z 求导:
∂ ∂ Z ⟨ Y 1 , X − X Z − E X ⟩ = ∂ ∂ Z tr ( Y 1 T ( X − X Z − E X ) ) \frac{\partial}{\partial Z} \left\langle Y_1, X - XZ - E_X \right\rangle = \frac{\partial}{\partial Z} \text{tr}(Y_1^T (X - XZ - E_X)) ZY1,XXZEX=Ztr(Y1T(XXZEX))
利用迹的性质 tr ( A B ) = tr ( B A ) \text{tr}(AB) = \text{tr}(BA) tr(AB)=tr(BA) 和矩阵微分的基本规则:
∂ ∂ Z tr ( Y 1 T ( X − X Z − E X ) ) = ∂ ∂ Z tr ( ( X − X Z − E X ) T Y 1 ) = ∂ ∂ Z tr ( − X T Y 1 Z + constant terms ) = − X T Y 1 \frac{\partial}{\partial Z} \text{tr}(Y_1^T (X - XZ - E_X)) = \frac{\partial}{\partial Z} \text{tr}((X - XZ - E_X)^T Y_1)\\ = \frac{\partial}{\partial Z} \text{tr}(-X^T Y_1 Z + \text{constant terms})\\ = -X^T Y_1 Ztr(Y1T(XXZEX))=Ztr((XXZEX)TY1)=Ztr(XTY1Z+constant terms)=XTY1

2. 第二项: μ 1 2 ∥ X − X Z − E X ∥ F 2 \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 2μ1XXZEXF2

Z Z Z 求导:
∂ ∂ Z ( μ 1 2 ∥ X − X Z − E X ∥ F 2 ) = μ 1 2 ∂ ∂ Z tr ( ( X − X Z − E X ) T ( X − X Z − E X ) ) \frac{\partial}{\partial Z} \left( \frac{\mu_1}{2} \|X - XZ - E_X\|_F^2 \right) = \frac{\mu_1}{2} \frac{\partial}{\partial Z} \text{tr}((X - XZ - E_X)^T (X - XZ - E_X)) Z(2μ1XXZEXF2)=2μ1Ztr((XXZEX)T(XXZEX))
利用迹的性质和矩阵微分的基本规则:
= μ 1 2 ∂ ∂ Z tr ( ( X − X Z − E X ) T ( X − X Z − E X ) ) = μ 1 2 ∂ ∂ Z tr ( ( X − X Z − E X ) T ( X − X Z − E X ) ) = μ 1 2 ∂ ∂ Z tr ( ( X − X Z − E X ) T ( X − X Z − E X ) ) = μ 1 2 ⋅ 2 ( X − X Z − E X ) T ( − X ) = − μ 1 X T ( X − X Z − E X ) = − μ 1 X T X + μ 1 X T X Z + μ 1 X T E X = \frac{\mu_1}{2} \frac{\partial}{\partial Z} \text{tr}((X - XZ - E_X)^T (X - XZ - E_X))\\ = \frac{\mu_1}{2} \frac{\partial}{\partial Z} \text{tr}((X - XZ - E_X)^T (X - XZ - E_X))\\ = \frac{\mu_1}{2} \frac{\partial}{\partial Z} \text{tr}((X - XZ - E_X)^T (X - XZ - E_X))\\ = \frac{\mu_1}{2} \cdot 2 (X - XZ - E_X)^T (-X)\\ = -\mu_1 X^T (X - XZ - E_X)\\ = -\mu_1 X^T X + \mu_1 X^T X Z + \mu_1 X^T E_X =2μ1Ztr((XXZEX)T(XXZEX))=2μ1Ztr((XXZEX)T(XXZEX))=2μ1Ztr((XXZEX)T(XXZEX))=2μ12(XXZEX)T(X)=μ1XT(XXZEX)=μ1XTX+μ1XTXZ+μ1XTEX

3. 第三项: ⟨ Y 2 , Z − Z C − E Z ⟩ \left\langle Y_2, Z - ZC - E_Z \right\rangle Y2,ZZCEZ

Z Z Z 求导:
∂ ∂ Z ⟨ Y 2 , Z − Z C − E Z ⟩ = ∂ ∂ Z tr ( Y 2 T ( Z − Z C − E Z ) ) \frac{\partial}{\partial Z} \left\langle Y_2, Z - ZC - E_Z \right\rangle = \frac{\partial}{\partial Z} \text{tr}(Y_2^T (Z - ZC - E_Z)) ZY2,ZZCEZ=Ztr(Y2T(ZZCEZ))
利用迹的性质和矩阵微分的基本规则:
= ∂ ∂ Z tr ( ( Z − Z C − E Z ) T Y 2 ) = ∂ ∂ Z tr ( Z T Y 2 − Z T Y 2 C − constant terms ) = Y 2 − Y 2 C = \frac{\partial}{\partial Z} \text{tr}((Z - ZC - E_Z)^T Y_2)\\ = \frac{\partial}{\partial Z} \text{tr}(Z^T Y_2 - Z^T Y_2 C - \text{constant terms})\\ = Y_2 - Y_2 C =Ztr((ZZCEZ)TY2)=Ztr(ZTY2ZTY2Cconstant terms)=Y2Y2C

4. 第四项: μ 2 2 ∥ Z − Z C − E Z ∥ F 2 \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 2μ2ZZCEZF2

Z Z Z 求导:
∂ ∂ Z ( μ 2 2 ∥ Z − Z C − E Z ∥ F 2 ) = μ 2 2 ∂ ∂ Z tr ( ( Z − Z C − E Z ) T ( Z − Z C − E Z ) ) \frac{\partial}{\partial Z} \left( \frac{\mu_2}{2} \|Z - ZC - E_Z\|_F^2 \right) = \frac{\mu_2}{2} \frac{\partial}{\partial Z} \text{tr}((Z - ZC - E_Z)^T (Z - ZC - E_Z)) Z(2μ2ZZCEZF2)=2μ2Ztr((ZZCEZ)T(ZZCEZ))
利用迹的性质和矩阵微分的基本规则:
= μ 2 2 ⋅ 2 ( Z − Z C − E Z ) T ( I − C ) = μ 2 ( I − C ) ( Z − Z C − E Z ) = μ 2 ( I − C ) Z − μ 2 ( I − C ) Z C − μ 2 ( I − C ) E Z = \frac{\mu_2}{2} \cdot 2 (Z - ZC - E_Z)^T (I - C)\\ = \mu_2 (I - C) (Z - ZC - E_Z)\\ = \mu_2 (I - C) Z - \mu_2 (I - C) ZC - \mu_2 (I - C) E_Z =2μ22(ZZCEZ)T(IC)=μ2(IC)(ZZCEZ)=μ2(IC)Zμ2(IC)ZCμ2(IC)EZ

5. 第五项: ⟨ W , Z − G ⟩ \left\langle W, Z - G \right\rangle W,ZG

Z Z Z 求导:
∂ ∂ Z ⟨ W , Z − G ⟩ = ∂ ∂ Z tr ( W T ( Z − G ) ) \frac{\partial}{\partial Z} \left\langle W, Z - G \right\rangle = \frac{\partial}{\partial Z} \text{tr}(W^T (Z - G)) ZW,ZG=Ztr(WT(ZG))
利用迹的性质和矩阵微分的基本规则:
= ∂ ∂ Z tr ( ( Z − G ) T W ) = W = \frac{\partial}{\partial Z} \text{tr}((Z - G)^T W)\\ = W =Ztr((ZG)TW)=W

6. 第六项: ρ 2 ∥ Z − G ∥ F 2 \frac{\rho}{2} \|Z - G\|_F^2 2ρZGF2

Z Z Z 求导:
∂ ∂ Z ( ρ 2 ∥ Z − G ∥ F 2 ) = ρ 2 ∂ ∂ Z tr ( ( Z − G ) T ( Z − G ) ) \frac{\partial}{\partial Z} \left( \frac{\rho}{2} \|Z - G\|_F^2 \right) = \frac{\rho}{2} \frac{\partial}{\partial Z} \text{tr}((Z - G)^T (Z - G)) Z(2ρZGF2)=2ρZtr((ZG)T(ZG))
利用迹的性质和矩阵微分的基本规则:
= ρ 2 ⋅ 2 ( Z − G ) T = ρ ( Z − G ) = \frac{\rho}{2} \cdot 2 (Z - G)^T\\ = \rho (Z - G) =2ρ2(ZG)T=ρ(ZG)

将所有导数相加

将上述各项的导数相加,我们得到:

∂ ∂ Z ( 目标函数 ) = − X T Y 1 − μ 1 X T X + μ 1 X T X Z + μ 1 X T E X + Y 2 − Y 2 C + μ 2 ( I − C ) Z − μ 2 ( I − C ) Z C − μ 2 ( I − C ) E Z + W + ρ Z − ρ G \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = -X^T Y_1 - \mu_1 X^T X + \mu_1 X^T X Z + \mu_1 X^T E_X + Y_2 - Y_2 C + \mu_2 (I - C) Z - \mu_2 (I - C) ZC - \mu_2 (I - C) E_Z + W + \rho Z - \rho G Z(目标函数)=XTY1μ1XTX+μ1XTXZ+μ1XTEX+Y2Y2C+μ2(IC)Zμ2(IC)ZCμ2(IC)EZ+W+ρZρG

整理结果

将各项整理合并,得到最终的导数表达式:

∂ ∂ Z ( 目标函数 ) = ( μ 1 X T X + μ 2 ( I − C ) + ρ I ) Z − μ 1 X T X Z C − μ 2 ( I − C ) Z C − X T Y 1 + μ 1 X T E X + Y 2 − Y 2 C − μ 2 ( I − C ) E Z + W − ρ G \frac{\partial}{\partial Z} \left( \text{目标函数} \right) = (\mu_1 X^T X + \mu_2 (I - C) + \rho I) Z - \mu_1 X^T X ZC - \mu_2 (I - C) ZC - X^T Y_1 + \mu_1 X^T E_X + Y_2 - Y_2 C - \mu_2 (I - C) E_Z + W - \rho G Z(目标函数)=(μ1XTX+μ2(IC)+ρI)Zμ1XTXZCμ2(IC)ZCXTY1+μ1XTEX+Y2Y2Cμ2(IC)EZ+WρG

这就是对 Z Z Z 求偏导后的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值