题目描述:
众所周知,最小生成树是指使图中所有节点连通且边权和最小时的边权子集。 不过最小生成树太简单了,我们现在来思考一个稍微复杂一点的问题。现在给定一个n个点,m条边的图,每条边e都有一个权值w。定义删除一条边e的代价为w,并且你可以对这个图执行任意次删边操作。设这个图的最小生成树权值和为sum,定义一个图的最小生成树是独一无二的当且仅当这个图的边集中没有除最小生成树外的其他子集能满足权值和为sum且使得所有点连通。一个图刚开始可能没有独一无二的最小生成树,现在你可以删除一些边,使得剩下的边的最小生成树大小依然为sum并且这个图的最小生成树是独一无二的。 现在我们想要知道删除的边的权值和最小是多少?
输入描述:
第一行输入为n和m,表示这个图的点数和边数。
接下来m行,每行三个值u,v,w,分别代表每条边的两个端点和边权。
输出描述:
一个整数,代表删除的边的最小权值和。
示例1
输入
1 0
输出
0
思路:
按照边长排序,将边长相等的边记录起始和结束的标号。
遍历这些边,若两个端点属于不同的集合那么记录边长。
再次遍历这些边,出现的连接不同集合的边时,则将两点所在的集合合并,同时在res中减去边长。
得到的res即为与最小生成树等效且等长的边长总和。
代码:
#include<iostream>
#include<cstring>
#include<map>
#include<algorithm>
using namespace std;
typedef pair<int,int>PII;
map<PII,int>mp;
const int N=1e6+10;
int father[N];
int n,m;
// 边的信息
struct Edge
{
int a, b, v;
bool operator< (const Edge &W) const
{
return v < W.v;
}
}edge[N];
// 并查集——寻找当前集合的代表元素
int find(int x)
{
if (father[x] != x) father[x] = find(father[x]);
return father[x];
}
// 所有边存储在 Edge edges[M];
// 函数返回最小生成树中所有边的总长度
long long Kruskal()
{
long long res = 0;
// 初始化并查集代表元素
for (int i = 1; i <= n; i ++ ) father[i] = i;
sort(edge, edge + m);
for (int i = 0; i < m; i ++ )
{
int l=i;
int r=i;
while(r<m)
{
if(edge[r].v==edge[l].v)
{
r++;
}
else
{
break;
}
}
for(int j=l;j<r;j++)
{
if(find(edge[j].a)!=find(edge[j].b))
{
res+=edge[j].v;
}
}
for(int j=l;j<r;j++)
{
if(find(edge[j].a)!=find(edge[j].b))
{
father[find(edge[j].a)]=find(edge[j].b);
res-=edge[j].v;
}
}
}
return res;
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>edge[i].a>>edge[i].b>>edge[i].v;
}
cout<<Kruskal();
}