题目描述
神经网络就是一张有向图,图中的节点称为神经元,而且两个神经
元之间至多有一条边相连,下图是一个神经元的例子:
图中,X1—X3是信息输入渠道,Y1-Y2是信息输出渠道,C1表示神经元目前的状态,
Ui是阈值,可视为神经元的一个内在参数。
神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神
经无分为几层;称为输入层、输出层,和若干个中间层。每层神经元只向下一层的神经元
输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。
图片
兰兰规定,Ci服从公式:(其中n是网络中所有神经元的数目)
图片
公式中的Wji(可能为负值)表示连接j号神经元和 i号神经元的边的权值。当 Ci大于0时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为Ci。
如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态(Ci),要求你的程序运算出最后网络输出层的状态。
输入格式
输入第一行是两个整数n(1≤n≤200)和p。接下来n行,每行两个整数,第i+1行是神经元i最初状态和其阈值(Ui),非输入层的神经元开始时状态必然为0。再下面P行,每行由两个整数i,j及一个整数Wij,表示连接神经元i、j的边权值为Wij。
输出格式
输出包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。仅输出最后状态非零的输出层神经元状态,并且按照编号由小到大顺序输出!
若输出层的神经元最后状态均为 0,则输出 NULL。
思路:
阅读题。。。小细节挺多的。。。好好读题吧
代码:
#include<iostream>
#include<queue>
#include<cstring>
#include<vector>
using namespace std;
const int N=1e5+10;
int e[N],ne[N],w[N],h[N],idx=0;
int n,p;
int arr[N],U[N];
int din[N],dout[N];
vector<int>s,t;
void add(int a,int b,int c)
{
w[idx]=c;
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
void topsort()
{
queue<int>q;
for(int i=0;i<s.size();i++)
{
q.push({s[i]});
}
while(!q.empty())
{
int t=q.front();
q.pop();
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
arr[j]+=w[i]*arr[t];
din[j]--;
if(!din[j])
{
if(arr[j]>U[j])
{
arr[j]-=U[j];
q.push(j);
}
else
{
arr[j]=0;
q.push(j);
}
}
}
}
bool flag=false;
for(int i=0;i<t.size();i++)
{
if(arr[t[i]])
{
flag=true;
cout<<t[i]<<' '<<arr[t[i]]<<endl;
}
}
if(!flag)
{
cout<<"NULL"<<endl;
}
}
int main()
{
cin>>n>>p;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
{
cin>>arr[i]>>U[i];
}
for(int i=1;i<=p;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
din[b]++;
dout[a]++;
}
for(int i=1;i<=n;i++)
{
if(!din[i])
{
s.push_back(i);
}
if(!dout[i])
{
t.push_back(i);
}
}
topsort();
}