引言
FDA-MIMO雷达通过在发射端阵元间引入一个远小于信号载频的频偏,使得发射导向矢量与距离和角度相关。利用距离维的额外自由度,FDA-MIMO可以无模糊地估计出目标距离和角度参数。
FDA-MIMO的信号模型
第m个阵元的发射信号:
s m ( t ) = ϕ m ( t ) e j 2 π f m t , 0 ≤ t ≤ T p , m = 1 , 2 , . . . , M , {
{s}_{m}}\left( t \right)={
{\phi }_{m}}\left( t \right){
{e}^{j2\pi {
{f}_{m}}t}},0\le t\le {
{T}_{p}},m=1,2,...,M, sm(t)=ϕm(t)ej2πfmt,0≤t≤Tp,m=1,2,...,M,
其中, T p T_p Tp为脉冲持续时间, ϕ m ( t ) {
{\phi }_{m}}\left( t \right) ϕm(t)为第m个天线的基带调制信号,M个天线发射的信号正交。
在接收端经过混频、匹配滤波等操作后,第n个天线单元输出的m路信号:
y n = [ y 1 , n , y 2 , n , … , y M , n ] T = ξ k [ 1 e − j 4 π Δ f c r k + j 2 π d T λ 0 sin θ k ⋮ e − j 4 π Δ f c ( M − 1 ) r k + j 2 π d T λ 0 ( M − 1 ) sin θ k ] e j 2 π d R λ 0 ( n − 1 ) sin θ k . {
{y}_{n}}={
{\left[ {
{y}_{1,n}},{
{y}_{2,n}},\ldots ,{
{y}_{M,n}} \right]}^{\text{T}}}={
{\xi }_{k}}\left[ \begin{matrix} 1 \\ {
{e}^{-j4\pi \frac{\Delta f}{c}{
{r}_{k}}+j2\pi \frac{
{
{d}_{\text{T}}}}{
{
{\lambda }_{0}}}\sin {
{\theta }_{k}}}} \\ \vdots \\ {
{e}^{-j4\pi \frac{\Delta f}{c}(M-1){
{r}_{k}}+j2\pi \frac{
{
{d}_{\text{T}}}}{
{
{\lambda }_{0}}}(M-1)\sin {
{\theta }_{k}}}} \\ \end{matrix} \right]{
{e}^{j2\pi \frac{
{
{d}_{\text{R}}}}{
{
{\lambda }_{0}}}(n-1)\sin {
{\theta }_{k}}}}. yn=[y1,n,y2,n,…,yM,n]T=ξk