记录一下语义分割任务Task02:MMSegmentation安装流程
预备知识
MMSegmentation 可以在 Linux, Windows 和 macOS 系统上运行,其需要安装 Python 3.7+, CUDA 10.2+ 和 PyTorch 1.8+
环境
由于我已经安装好Pytorch环境了,因此在这里直接给出环境的配置:pytorch1.8.1 + python3.8 + cuda11.1
# 检查 Pytorch
import torch, torchvision
print('Pytorch 版本', torch.__version__)
print('CUDA 是否可用',torch.cuda.is_available())
使用MIM安装MMCV
pip install -U openmim
mim install mmengine # 用mim进行安装
mim install 'mmcv==2.0.0rc4' # 指定版本
下载 MMSegmentation
git clone https://github.com/open-mmlab/mmsegmentation.git -b v1.1.0 # 克隆项目
安装 MMSegmentation
# 进入主目录
cd ./mmsegmentation # 进入mmsegmentation目录下
pip install -v -e . # 注意后面有个.
检查安装是否成功
# 检查 mmcv
import mmcv
from mmcv.ops import get_compiling_cuda_version, get_compiler_version
print('MMCV版本', mmcv.__version__)
print('CUDA版本', get_compiling_cuda_version())
print('编译器版本', get_compiler_version())

# 检查 mmsegmentation
import mmseg
from mmseg.utils import register_all_modules
from mmseg.apis import inference_model, init_model
print('mmsegmentation版本', mmseg.__version__)
![]()
没有错误,表示安装成功!
更进一步,可以通过运行一个简单的demo判断是否正确安装。在mmsegmentation目录下,分别进行两步操作。
步骤一:下载配置文件和模型文件
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .
步骤二: 验证推理 demo,运行以下命令
# 图像推理
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg
# 视频推理
推理的图片是demo/demo.png,也可以将图片替换成自己想要的图片进行推理,输出的图片为result.jpg。
附推理后的图片:

其他方法
除了可以通过下载源码安装之外,还可以将MMSegmentation作为第三方依赖库进行安装,具体操作和流程见开始:安装和运行 MMSEG
参考
官方教程:开始:安装和运行 MMSEG
github教程:安装配置MMSegmentation
本文详细介绍了MMSegmentation在Linux、Windows和macOS系统上的安装过程,包括Python、CUDA和PyTorch版本要求,以及MMCV和mmsegmentation的安装步骤和检查方法,最后提供了一个简单的推理demo示例。
869

被折叠的 条评论
为什么被折叠?



