工科数学分析复习

文章目录

引言

这里主要杨浩斌同学所写,现在我把它放在CSDN上,需要的同学自取。

七、微分方程

1、微分方程基本概念

微分方程的阶、微分方程的解、微分方程的通解、微分方程的特解、初始条件、初值问题、微分方程的积分曲线

2、可分离变量的微分方程

一般地,如果一个一阶微分方程能写成 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx的形式,那么原方程就称为可分离变量的微分方程
隐式解和隐式通解

3、齐次方程

如果一阶微分方程可化成 d y d x = φ ( y x ) \frac{dy}{dx}=\varphi(\frac{y}{x}) dxdy=φ(xy)的形式,那么就称这方程为齐次方程

  • 在齐次方程中引进新的未知函数 u = y x u=\displaystyle\frac{y}{x} u=xy,就能将其化为可分离变量的方程, y = u x . d y d x = u + x d u d x y=ux.\displaystyle\frac{dy}{dx}=u+x\frac{du}{dx} y=ux.dxdy=u+xdxdu代入方程并分离变量, d u φ ( u ) − u = d x x \frac{du}{\varphi(u)-u}=\frac{dx}{x} φ(u)udu=xdx
可化为齐次的方程

对于非其次方程 d y d x = a x 4 + b y + c a 1 x + b 1 y + c 1 \frac{dy}{dx}=\frac{ax4+by+c}{a_1x+b_1y+c_1} dxdy=a1x+b1y+c1ax4+by+c,令 x = X + h , y = Y + k x=X+h,y=Y+k x=X+h,y=Y+k,于是 d x = d X , d y = d Y dx=dX,dy=dY dx=dX,dy=dY,从而方程变为 d Y d X = a X + b Y + a h + b k + c a 1 X + b 1 Y + a 1 h + b 1 k + c 1 \frac{dY}{dX}=\frac{aX+bY+ah+bk+c}{a_1X+b_1Y+a_1h+b_1k+c_1} dXdY=a1X+b1Y+a1h+b1k+c1aX+bY+ah+bk+c如果方程组 { a h + b k + c = 0 a 1 h + b 1 k + c 1 = 0 \begin{cases} ah+bk+c=0\\ a_1h+b_1k+c_1=0 \end{cases} {ah+bk+c=0a1h+b1k+c1=0

  • a 1 a ≠ b 1 b \displaystyle\frac{a_1}{a}\neq\frac{b_1}{b} aa1=bb1,那么可以定出 h h h k k k使它们满足上述方程组,此时方程化为齐次方程 d Y d X = a X + b Y a 1 X + b 1 Y \displaystyle\frac{dY}{dX}=\frac{aX+bY}{a_1X+b_1Y} dXdY=a1X+b1YaX+bY
  • a 1 a = b 1 b \displaystyle\frac{a_1}{a}=\frac{b_1}{b} aa1=bb1时,令 a 1 a = b 1 b = λ \displaystyle\frac{a_1}{a}=\frac{b_1}{b}=\lambda aa1=bb1=λ,方程可以写成
    d y d x = a x + b y + c λ ( a x + b y ) + c 1 \displaystyle\frac{dy}{dx}=\frac{ax+by+c}{\lambda (ax+by)+c_1} dxdy=λ(ax+by)+c1ax+by+c,引入新变量 v = a x + b y v=ax+by v=ax+by,则 d v d x = a + b d y d x \displaystyle\frac{dv}{dx}=a+b\frac{dy}{dx} dxdv=a+bdxdy,于是方程变为 1 b ( d v d x − a ) = v + c λ v + c 1 \frac{1}{b}(\frac{dv}{dx}-a)=\frac{v+c}{\lambda v+c_1} b1(dxdva)=λv+c1v+c

4、一阶线性微分方程

d y d x + P ( x ) y = Q ( x ) \displaystyle\frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)叫做一阶线性微分方程。如果 Q ( x ) = 0 Q(x)=0 Q(x)=0,则方程为齐次的,如果 Q ( x ) ≠ 0 Q(x)\neq0 Q(x)=0,则方程为非齐次的
对于非齐次的,先把其化为齐次并求出齐次线性方程的通解 y = C e − ∫ P ( x ) d x y=Ce^{-\int P(x)dx} y=CeP(x)dx,然后用常数变易法,即做变换 y = u ( x ) e − ∫ P ( x ) d x y=u(x)e^{-\int P(x)dx} y=u(x)eP(x)dx,代入可得 u = ∫ Q ( x ) e ∫ P ( x ) d x d x + C u=\displaystyle\int Q(x)e^{\int P(x)dx}dx+C u=Q(x)eP(x)dxdx+C,而一阶非齐次线性方程的通解等于对应的齐次方程的通解与非齐次方程的一个特解之和。

伯努利方程

d y d x + P ( x ) y = Q ( x ) y n \displaystyle\frac{dy}{dx}+P(x)y=Q(x)y^n dxdy+P(x)y=Q(x)yn叫做伯努利方程,当 n ≠ 0 , n ≠ 1 n\neq 0,n\neq 1 n=0,n=1时,以 y n y^n yn除方程的两端,再引入新变量 z = y 1 − n , d z d x = ( 1 − n ) y − n d y d x z=y^{1-n},\displaystyle\frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx} z=y1n,dxdz=(1n)yndxdy,可得线性方程 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \displaystyle\frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x)

5、可降阶的高阶微分方程

y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)

接连积分 n n n次,便可得方程的通解

y ′ ′ = f ( x , y ′ ) y^{\prime\prime}=f(x,y^\prime) y=f(x,y)

y ′ = p y^\prime=p y=p,那么 y ′ ′ = d p d x = p ′ y^{\prime\prime}=\displaystyle\frac{dp}{dx}=p^\prime y=dxdp=p,方程即可变为关于变量 x 、 p x、p xp的一阶微分方程

y ′ ′ = f ( y , y ′ ) y^{\prime\prime}=f(y,y^\prime) y=f(y,y)

y ′ y^\prime y,则 y ′ ′ = d p d x = d p d y ⋅ d y d x = p d p d y y^{\prime\prime}=\displaystyle\frac{dp}{dx}=\frac{dp}{dy}\cdot\frac{dy}{dx}=p\frac{dp}{dy} y=dxdp=dydpdxdy=pdydp,方程变为 p d p d y = f ( y , p ) p\displaystyle\frac{dp}{dy}=f(y,p) pdydp=f(y,p)

6、高阶线性微分方程

线性微分方程的解的结构

对于二阶齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{\prime\prime}+P(x)y^\prime+Q(x)y=0 y+P(x)y+Q(x)y=0如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程的两个解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)也是其解
如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是二阶齐次方程的两个线性无关的特解,那么 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)就是该方程的通解。

推论

如果 y 1 ( x ) , y 2 ( x ) , ⋯   , y n ( x ) y_1(x),y_2(x),\cdots,y_n(x) y1(x),y2(x),,yn(x) n n n阶齐次线性方程 y ( n ) + a 1 ( x ) y ( n − 1 ) + ⋯ + a n − 1 ( x ) y ′ + a n ( x ) y = 0 y^{(n)}+a_1(x)y^{(n-1)}+\cdots+a_{n-1}(x)y^\prime+a_n(x)y=0 y(n)+a1(x)y(n1)++an1(x)y+an(x)y=0 n n n个线性无关的解,那么,此方程的通解为 y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + ⋯ + C n y n ( x ) y=C_1y_1(x)+C_2y_2(x)+\cdots+C_ny_n(x) y=C1y1(x)+C2y2(x)++Cnyn(x)

定理

y ∗ ( x ) y^*(x) y(x)是二阶非齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f ( x ) y^{\prime\prime}+P(x)y^\prime+Q(x)y=f(x) y+P(x)y+Q(x)y=f(x)的一个特解, Y ( x ) Y(x) Y(x)是与该方程对应的齐次方程的通解,那么 y = Y ( x ) + y ∗ ( x ) y=Y(x)+y^*(x) y=Y(x)+y(x)是该二阶非齐次线性微分方程的通解。

叠加原理

设非齐次线性方程的右端 f ( x ) f(x) f(x)是两个函数之和,即 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) y^{\prime\prime}+P(x)y^\prime+Q(x)y=f_1(x)+f_2(x) y+P(x)y+Q(x)y=f1(x)+f2(x) y 1 ∗ ( x ) y^*_1(x) y1(x) y 1 ∗ ( x ) y^*_1(x) y1(x)分别是方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y^{\prime\prime}+P(x)y^\prime+Q(x)y=f_1(x) y+P(x)y+Q(x)y=f1(x) y ′ ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) y^{\prime\prime}+P(x)y^\prime+Q(x)y=f_2(x) y+P(x)y+Q(x)y=f2(x)的特解,那么 y 1 ∗ ( x ) + y 2 ∗ ( x ) y^*_1(x)+y^*_2(x) y1(x)+y2(x)就是原方程的特解

常数变易法

对于二阶线性方程,如果已知齐次方程的通解为 Y ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) Y(x)=C_1y_1(x)+C_2y_2(x) Y(x)=C1y1(x)+C2y2(x),那么可以设通解为 y = y 1 ( x ) v 1 + y 2 ( x ) v 2 y=y_1(x)v_1+y_2(x)v_2 y=y1(x)v1+y2(x)v2
联立 { y 1 v 1 ′ + y 2 v 2 ′ = 0 y 1 ′ v 1 ′ + y 2 ′ v 2 ′ = f \begin{cases} y_1v_1^\prime +y_2v_2^\prime=0\\ y^\prime_1 v^\prime_1+y^\prime_2v^\prime_2=f \end{cases} {y1v1+y2v2=0y1v1+y2v2=f
可解得一个特解
如果只知一个解(略)

7、常系数齐次线性微分方程

对于方程 y ′ ′ + p y ′ + q y = 0 y^{\prime\prime}+py^\prime+qy=0 y+py+qy=0
设两个解为 y = e r x y=e^{rx} y=erx,则可得特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0

  • 若特征方程有两个不同的实根,则微分方程的通解为 y = C 1 e r 1 x + C 2 e r 2 x y=C_1e^{r_1x}+C_2e^{r_2x} y=C1er1x+C2er2x
  • 若特征方程的两个实根相同,则通解为 y = ( C 1 + C 2 x ) e r 1 x y=(C_1+C_2x)e^{r_1x} y=(C1+C2x)er1x
  • 若特征方程有一对共轭复根,设复根分别为 r 1 = α + i β , r 2 = α − i β r_1=\alpha+i\beta,r_2=\alpha-i\beta r1=α+iβ,r2=αiβ,则微分方程的通解为 y = e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) y=e^{\alpha x}(C_1\cos\beta x+C_2\sin \beta x) y=eαx(C1cosβx+C2sinβx)

n n n阶常系数齐次线性微分方程(略)

8、常系数非齐次线性微分方程

待定系数法
  1. f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x)
    如果 f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x),则二阶常系数非齐次线性微分方程具有形如 y ∗ = x k Q m ( x ) e λ x y^*=x^kQ_m(x)e^{\lambda x} y=xkQm(x)eλx的特解,其中 Q m ( x ) Q_m(x) Qm(x)是与 P m ( x ) P_m(x) Pm(x)同次的多项式,而 k k k λ \lambda λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为0、1、2
  2. f ( x ) = e λ x [ P l ( 1 ) ( x ) cos ⁡ ω x + P n ( 2 ) ( x ) sin ⁡ ω x ] f(x)=e^{\lambda x}[P^{(1)}_l(x)\cos \omega x+P^{(2)}_n (x)\sin\omega x] f(x)=eλx[Pl(1)(x)cosωx+Pn(2)(x)sinωx]
    如果 f ( x ) = e λ x [ P l ( 1 ) ( x ) cos ⁡ ω x + P n ( 2 ) ( x ) sin ⁡ ω x ] f(x)=e^{\lambda x}[P^{(1)}_l(x)\cos \omega x+P^{(2)}_n (x)\sin\omega x] f(x)=eλx[Pl(1)(x)cosωx+Pn(2)(x)sinωx],则二阶常系数非齐次线性微分方程的特解可设为 y ∗ = x k e λ x [ R m ( 1 ) ( x ) cos ⁡ ω x + R m ( 2 ) ( x ) sin ⁡ ω x ] y^*=x^ke^{\lambda x}[R^{(1)}_m(x)\cos\omega x+R^{(2)}_m(x)\sin\omega x] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx]其中 R m ( 1 ) ( x ) R^{(1)}_m(x) Rm(1)(x) R m ( 2 ) ( x ) R^{(2)}_m(x) Rm(2)(x) m m m次多项式, m = max ⁡ { l , n } m=\max\{l,n\} m=max{l,n},而 k k k λ + i ω \lambda+i\omega λ+iω λ − i ω \lambda-i\omega λiω不是特征方程的根、或是特征方程的单根依次取0或1

9、欧拉方程

形如 x n y ( n ) + p 1 x n − 1 y ( n − 1 ) + ⋯ + p n − 1 x y ′ + p n y = f ( x ) x^ny^{(n)}+p_1x^{n-1}y^{(n-1)}+\cdots+p_{n-1}xy^\prime+p_ny=f(x) xny(n)+p1xn1y(n1)++pn1xy+pny=f(x)的方程叫做欧拉方程
作变换 x = e t x=e^t x=et
我们有 d y d x = 1 x d y d t \displaystyle\frac{dy}{dx}=\frac{1}{x}\frac{dy}{dt} dxdy=x1dtdy

d 2 y d x 2 = 1 x 2 ( d 2 y d t 2 − d y d t ) \displaystyle\frac{d^2y}{dx^2}=\frac{1}{x^2}(\frac{d^2y}{dt^2}-\frac{dy}{dt}) dx2d2y=x21(dt2d2ydtdy)

d 3 y d x 3 = 1 x 3 ( d 3 y d t 3 − 3 d 2 y d t 2 + 2 d y d t ) \displaystyle\frac{d^3y}{dx^3}=\frac{1}{x^3}(\frac{d^3y}{dt^3}-3\frac{d^2y}{dt^2}+2\frac{dy}{dt}) dx3d3y=x31(dt3d3y3dt2d2y+2dtdy)
代入后可得常系数线性微分方程

10、常系数线性微分方程组(略)

八、空间解析几何与向量代数

1、向量及其线性运算

  • 向量概念、向量相等、向量的模、单位向量、零向量、向量 a \mathbf{a} a b \mathbf{b} b的夹角、向量平行、向量垂直、 k k k个向量共面、向量的加减法(三角形法则、平行四边形法则、交换律、结合律)、负向量、向量与数的乘法( ∣ λ a → ∣ = ∣ λ ∣ ∣ a → ∣ |\lambda \overrightarrow{a}|=|\lambda||\overrightarrow{a}| λa =λa 、结合律、分配律)
定理

设向量 a → ≠ 0 → \overrightarrow{a}\neq\overrightarrow{0} a =0 ,向量 b → \overrightarrow{b} b 平行于 a → \overrightarrow{a} a 的充分必要条件是:存在唯一的实数 λ \lambda λ,使 b → = λ a → \overrightarrow{b}=\lambda\overrightarrow{a} b =λa

空间直角坐标系

坐标轴与坐标面、卦限、坐标分解式、分向量、向径( r → = O M → \overrightarrow{r}=\overrightarrow{OM} r =OM 称为点 M M M关于原点的向径)、向量的模、两点间距离公式

方向角与方向余弦

非零向量 r → \overrightarrow{r} r 与三条坐标轴的夹角 α 、 β 、 γ \alpha、\beta、\gamma αβγ称为向量 r → \overrightarrow{r} r 的方向角, ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = ( x ∣ r → ∣ , y ∣ r → ∣ , z ∣ r → ∣ ) (\cos \alpha,\cos \beta,\cos \gamma)=(\displaystyle\frac{x}{|\overrightarrow{r}|},\frac{y}{|\overrightarrow{r}|},\frac{z}{|\overrightarrow{r}|}) (cosα,cosβ,cosγ)=(r x,r y,r z) cos ⁡ α , cos ⁡ β , cos ⁡ γ \cos \alpha,\cos \beta,\cos \gamma cosα,cosβ,cosγ称为向量 r → \overrightarrow{r} r 的方向余弦,且有 cos ⁡ 2 α + cos ⁡ 2 β + cos ⁡ 2 γ = 1 \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1 cos2α+cos2β+cos2γ=1

向量在轴上的投影

设点 O O O及单位向量 e → \overrightarrow{e} e 确定 u u u轴。任给向量 r → \overrightarrow{r} r ,作 O M → = r → \overrightarrow{OM}=\overrightarrow{r} OM =r ,再过点 M M M作与 u u u轴垂直的平面交 u u u轴于点 M ′ M^\prime M(点 M ′ M^\prime M叫做点 M M M u u u轴上的投影),则向量 O M ′ → \overrightarrow{OM^\prime} OM 称为向量 r → \overrightarrow{r} r u u u轴上的分向量。设 O M ′ → = λ e → \overrightarrow{OM^\prime}=\lambda\overrightarrow{e} OM =λe ,则数 λ \lambda λ称为向量 r → \overrightarrow{r} r u u u轴上的投影,记作 ( r → ) u (\overrightarrow{r})_u (r )u
向量 a → \overrightarrow{a} a 在直角坐标系 O x y z Oxyz Oxyz中的坐标 a x 、 a y 、 a z a_x、a_y、a_z axayaz就是 a → \overrightarrow{a} a 在三条坐标轴上的投影

性质
  1. ( a → ) u = ∣ a → ∣ cos ⁡ φ (\overrightarrow{a})_u=|\overrightarrow{a}|\cos\varphi (a )u=a cosφ,其中 φ \varphi φ为向量 a → \overrightarrow{a} a u u u轴的夹角
  2. ( a → + b → ) u = ( a → ) u + ( b → ) u (\overrightarrow{a}+\overrightarrow{b})_u=(\overrightarrow{a})_u+(\overrightarrow{b})_u (a +b )u=(a )u+(b )u
  3. ( λ a → ) u = λ ( a → ) u (\lambda\overrightarrow{a})_u=\lambda(\overrightarrow{a})_u (λa )u=λ(a )u

2、数量积、向量积、混合积

两向量数量积( a → ⋅ b → = ∣ a → ∣ ∣ b → ∣ cos ⁡ θ \overrightarrow{a}\cdot\overrightarrow{b}=|\overrightarrow{a}||\overrightarrow{b}|\cos\theta a b =a b cosθ、交换律、分配律、结合律)

两向量向量积
性质
  1. a → × a → = 0 \overrightarrow{a}\times\overrightarrow{a}=0 a ×a =0
  2. 如果 a → × b → = 0 \overrightarrow{a}\times\overrightarrow{b}=0 a ×b =0,那么 a → / / b → \overrightarrow{a}//\overrightarrow{b} a //b
  3. a → × b → = − b → × a → \overrightarrow{a}\times\overrightarrow{b}=-\overrightarrow{b}\times\overrightarrow{a} a ×b =b ×a
  4. ( a → + b → ) × c → = a → × c → + b → × c → (\overrightarrow{a}+\overrightarrow{b})\times\overrightarrow{c}=\overrightarrow{a}\times\overrightarrow{c}+\overrightarrow{b}\times\overrightarrow{c} (a +b )×c =a ×c +b ×c
  5. a → × b → = ∣ i → j → k → a x a y a z b x b y b z ∣ \overrightarrow{a}\times\overrightarrow{b}=\begin{vmatrix} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ a_x&a_y&a_z\\ b_x&b_y&b_z \end{vmatrix} a ×b =i axbxj aybyk azbz
    向量混合积
    [ a → b → c → ] = ( a → × b → ) ⋅ c → = ∣ a x a y a z b x b y b z c x c y c z ∣ [\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}]=(\overrightarrow{a}\times\overrightarrow{b})\cdot\overrightarrow{c}=\begin{vmatrix} a_x&a_y&a_z\\ b_x&b_y&b_z\\ c_x&c_y&c_z \end{vmatrix} [a b c ]=(a ×b )c =axbxcxaybycyazbzcz
    三向量 a → 、 b → 、 c → \overrightarrow{a}、\overrightarrow{b}、\overrightarrow{c} a b c 共面的充分必要条件式他们的混合积为0

3、曲面及其方程

曲面方程
旋转曲面

旋转曲线和定直线叫做旋转曲面的母线
在曲线 C C C的方程 f ( y , z ) = 0 f(y,z)=0 f(y,z)=0中将 y y y改成 ± x 2 + y 2 \pm\sqrt{x^2+y^2} ±x2+y2 ,使得曲线 C C C z z z轴旋转所成的旋转曲面方程

柱面

直线 L L L沿定曲线 C C C平行移动形成的轨迹叫做柱面,定直线 C C C叫做柱面的准线,动直线 L L L叫做柱面的母线

二次曲面

椭圆锥面 x 2 a 2 + y 2 b 2 = z 2 \displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=z^2 a2x2+b2y2=z2

椭球面 x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

双叶双曲面 x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \displaystyle\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2b2y2c2z2=1

椭圆抛物面 x 2 a 2 + y 2 b 2 = z \displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z

双曲抛物面(马鞍面) x 2 a 2 − y 2 b 2 = z \displaystyle\frac{x^2}{a^2}-\frac{y^2}{b^2}=z a2x2b2y2=z

椭圆柱面、双曲柱面、抛物柱面

4、空间曲线及其方程

空间曲线的一般方程

{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0

空间曲线的参数方程

{ x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases} x=x(t)\\ y=y(t)\\ z=z(t) \end{cases} x=x(t)y=y(t)z=z(t)

曲面的参数方程

{ x = x ( s , t ) y = y ( s , t ) z = z ( s , t ) \begin{cases} x=x(s,t)\\ y=y(s,t)\\ z=z(s,t) \end{cases} x=x(s,t)y=y(s,t)z=z(s,t)

空间曲线在坐标面上的投影

设空间曲线 C C C的一般方程为 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0
对于方程组消去变量 z z z后得方程 H ( x , y ) = 0 H(x,y)=0 H(x,y)=0
投影柱面、投影曲线
C C C x O y xOy xOy面上的投影: { H ( x , y ) = 0 z = 0 \begin{cases} H(x,y)=0\\ z=0 \end{cases} {H(x,y)=0z=0
同理可得包含曲线 C C C y O z yOz yOz面或 x O z xOz xOz面上的投影的曲线方程

5、平面及其方程

平面的点法式方程

设平面的法线向量 n → \overrightarrow{n} n
A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_0)+B(y-y_0)+C(z-z_0)=0 A(xx0)+B(yy0)+C(zz0)=0

平面的一般方程

A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

平面的截距式方程

x a + y b + z c = 1 \displaystyle\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 ax+by+cz=1

两平面的夹角

设平面 Π 1 \varPi_1 Π1 Π 2 \varPi_2 Π2的法线向量依次为 n 1 → = ( A 1 , B 1 , C 1 ) \overrightarrow{n_1}=(A_1,B_1,C_1) n1 =(A1,B1,C1) n 2 → = ( A 2 , B 2 , C 2 ) \overrightarrow{n_2}=(A_2,B_2,C_2) n2 =(A2,B2,C2),则平面 Π 1 \varPi_1 Π1 Π 2 \varPi_2 Π2的夹角 θ \theta θ可由 cos ⁡ θ = ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 ⋅ A 2 2 + B 2 2 + C 2 2 \cos\theta=\displaystyle\frac{|A_1A_2+B_1B_2+C_1C_2|}{\sqrt{A_1^2+B_1^2+C_1^2}\cdot\sqrt{A_2^2+B_2^2+C_2^2}} cosθ=A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2来确定

  • Π 1 \varPi_1 Π1 Π 2 \varPi_2 Π2互相垂直相当于 A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 A_1A_2+B_1B_2+C_1C_2=0 A1A2+B1B2+C1C2=0
  • Π 1 \varPi_1 Π1 Π 2 \varPi_2 Π2互相平行或重合相当于 A 1 A 2 = B 1 B 2 = C 1 C 2 \displaystyle\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2} A2A1=B2B1=C2C1
  • P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)到平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0的距离公式
    d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d=\displaystyle\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

6、空间直线及其方程

空间直线的一般方程

{ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0

空间直线的对称式方程

设直线上一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)和一方向向量 s → = ( m , n , p ) \overrightarrow{s}=(m,n,p) s =(m,n,p)
x − x 0 m = y − y 0 n = z − z 0 p \displaystyle\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p} mxx0=nyy0=pzz0
直线的任一方向向量 s → \overrightarrow{s} s 的坐标 m 、 n 、 p m、n、p mnp叫做直线的一组方向数,向量 s → \overrightarrow{s} s 的方向余弦叫做直线的方向余弦

直线的参数方程

{ x = x 0 + m t y = y 0 + n t z = z 0 + p t \begin{cases} x=x_0+mt\\ y=y_0+nt\\ z=z_0+pt \end{cases} x=x0+mty=y0+ntz=z0+pt

两直线的夹角

设直线 L 1 L_1 L1 L 2 L_2 L2的方向向量依次为 s 1 → = ( m 1 , n 1 , p 1 ) \overrightarrow{s_1}=(m_1,n_1,p_1) s1 =(m1,n1,p1) s 2 → = ( m 2 , n 2 , p 2 ) \overrightarrow{s_2}=(m_2,n_2,p_2) s2 =(m2,n2,p2)则夹角 φ \varphi φ可由
cos ⁡ φ = ∣ m 1 m 2 + n 1 n 2 + p 1 p 2 ∣ m 1 2 + n 1 2 + p 1 2 m 2 2 + n 2 2 + p 2 2 \cos\varphi=\displaystyle\frac{|m_1m_2+n_1n_2+p_1p_2|}{\sqrt{m_1^2+n_1^2+p_1^2}\sqrt{m_2^2+n_2^2+p_2^2}} cosφ=m12+n12+p12 m22+n22+p22 m1m2+n1n2+p1p2确定

  • 两直线 L 1 L_1 L1 L 2 L_2 L2互相垂直相当于 m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 m_1m_2+n_1n_2+p_1p_2=0 m1m2+n1n2+p1p2=0
  • 两直线 L 1 L_1 L1 L 2 L_2 L2互相平行或重合相当于 m 1 m 2 = n 1 n 2 = p 1 p 2 \displaystyle\frac{m_1}{m_2}=\frac{n_1}{n_2}=\frac{p_1}{p_2} m2m1=n2n1=p2p1
直线与平面的夹角

设直线的方向向量为 s → = ( m , n , p ) \overrightarrow{s}=(m,n,p) s =(m,n,p),平面的法线向量为 n → = ( A , B , C ) \overrightarrow{n}=(A,B,C) n =(A,B,C),直线与平面的夹角为 φ \varphi φ,则有 sin ⁡ φ = ∣ A m + B n + C p ∣ A 2 + B 2 + C 2 ⋅ m 2 + n 2 + p 2 \sin\varphi=\displaystyle\frac{|Am+Bn+Cp|}{\sqrt{A^2+B^2+C^2}\cdot\sqrt{m^2+n^2+p^2}} sinφ=A2+B2+C2 m2+n2+p2 Am+Bn+Cp

  • 直线与平面垂直相当于 A m = B n = C p \displaystyle\frac{A}{m}=\frac{B}{n}=\frac{C}{p} mA=nB=pC
  • 直线与平面平行或直线在平面上相当于 A m + B n + C p = 0 Am+Bn+Cp=0 Am+Bn+Cp=0
平面束方程

设直线 L L L由方程组 { A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 \begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases} {A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0
所确定,其中两平面不平行。则平面束方程为
A 1 x + B 1 y + C 1 z + D 1 + λ ( A 2 x + B 2 y + C 2 z + D 2 ) = 0 A_1x+B_1y+C_1z+D_1+\lambda(A_2x+B_2y+C_2z+D_2)=0 A1x+B1y+C1z+D1+λ(A2x+B2y+C2z+D2)=0

九、多元函数微分法及其应用

1、多元函数基本概念

平面点集
  • 坐标平面上具有某种性质P的点的集合,称为平面点集,记作
    E = { ( x , y ) ∣ ( x , y ) 具 有 性 质 P } E=\{(x,y)|(x,y)具有性质P\} E={(x,y)(x,y)P}
领域
  • P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) x O y xOy xOy平面上的一个点, δ \delta δ是某一正数,与点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)距离小于 δ \delta δ的点 P ( x , y ) P(x,y) P(x,y)的全体,称为点 P 0 P_0 P0 δ \delta δ领域,记作 ( U 0 , δ ) (U_0,\delta) (U0,δ),即 U ( P 0 , δ ) = { ( x , y ) ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ } U(P_0,\delta)=\{(x,y)|\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta\} U(P0,δ)={(x,y)(xx0)2+(yy0)2 <δ}
  • P 0 P_0 P0的去心领域,记作 U ° ( P 0 , δ ) = { P ∣ 0 < ∣ P P 0 ∣ < δ } U\degree(P_0,\delta)=\{P|0<|PP_0|<\delta\} U°(P0,δ)={P0<PP0<δ}
点与点集之间的关系

任意一点 P ∈ R 2 P\in\R^2 PR2与任意一个点集 E ⊂ R 2 E\subset\R^2 ER2之间必有以下三种关系中的一种:

  1. 内点:如果存在点 P P P的某个领域 U ( P ) U(P) U(P),使得 U ( P ) ⊂ E U(P)\subset E U(P)E,则称 P P P E E E的内点
  2. 外点:如果存在点 P P P的某个领域 U ( P ) U(P) U(P),使得 U ( P ) ∩ E = ∅ U(P)\cap E=\varnothing U(P)E=,则称 P P P E E E的外点
  3. 边界点:如果点 P P P的任一领域内既含有属于 E E E的点,又含有不属于 E E E的点,则称 P P P E E E的边界点
    E E E的边界点的全体,称为 E E E的边界,记作 ∂ E \partial E E
聚点
  • 如果对于任意给定的 δ > 0 \delta>0 δ>0,点 P P P的去心领域 U ° ( P , δ ) U\degree(P,\delta) U°(P,δ)内总有 E E E中的点,则称 P P P E E E的聚点
平面点集
  1. 开集:如果点集 E E E的点都是 E E E的内点,则称 E E E为开集
  2. 闭集:如果点集 E E E的边界 ∂ E ⊂ E \partial E\subset E EE,则称 E E E为闭集
  3. 连通集:如果点集 E E E内任何两点,都可用折线联结起来,且该折线上的点都属于 E E E,则称 E E E为连通集
  4. 区域(或开区域):连通的开集称为区域或开区域
  5. 闭区域:开区域连同它的边界一起所构成的点集称为闭区域
  6. 有界集:对于平面点集 E E E,如果存在某一正数 r r r,使得 E ⊂ U ( O , r ) E\subset U(O,r) EU(O,r),其中 O O O是坐标原点,则称 E E E为有界集
  7. 无界集:一个集合如果不是有界集,就称这集合为无界集
n n n维空间
多元函数的概念
  • D D D R 2 \R^2 R2的一个非空子集,称映射 f : D → R f:D\rightarrow\R f:DR为定义在 D D D上的二元函数,记为 z = f ( x , y ) , ( x , y ) ∈ D z=f(x,y),(x,y)\in D z=f(x,y),(x,y)D其中点集 D D D称为该函数的定义域, x , y x,y x,y称为自变量, z z z称为因变量
  • 函数值 f ( x , y ) f(x,y) f(x,y)的全体所构成的集合称为函数 f f f的值域,记作 f ( D ) f(D) f(D)
多元函数的极限

设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点,如果存在常数 A A A,对于任意给定的正数 ϵ \epsilon ϵ,总存在正数 δ \delta δ,使得当点 P ( x , y ) ∈ D ∩ U ° ( P 0 , δ ) P(x,y)\in D\cap U\degree(P_0,\delta) P(x,y)DU°(P0,δ)时,都有 ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ϵ |f(P)-A|=|f(x,y)-A|<\epsilon f(P)A=f(x,y)A<ϵ成立,那么就称常数 A A A为函数 f ( x , y ) f(x,y) f(x,y) ( x , y ) → ( x 0 , y 0 ) (x,y)\rightarrow(x_0,y_0) (x,y)(x0,y0)时的极限,记作
lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \displaystyle\lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A二元函数的极限也叫做二重极限

多元函数的连续性
  • 设二元函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点,且 P 0 ∈ D P_0\in D P0D。如果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \displaystyle\lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0),则称函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)连续
    如果函数 f ( x , y ) f(x,y) f(x,y) D D D的每一点都连续,那么称函数 f ( x , y ) f(x,y) f(x,y) D D D上连续
  • 设函数 f ( x , y ) f(x,y) f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的聚点。如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)不连续,则称 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为函数 f ( x , y ) f(x,y) f(x,y)的间断点
在有界闭区域上连续的多元函数的性质
  1. 在有界闭区域 D D D上的多元函数,必定在 D D D上有界,且能取得它的最大值和最小值
  2. 在有界闭区域 D D D上的多元连续函数必取得介于最大值和最小值之间的任何值
  3. 在有界闭区域 D D D上的多元连续函数必定在 D D D上一致连续

2、偏导数

定义 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一领域内有定义,当 y y y固定在 y 0 y_0 y0 x x x x 0 x_0 x0处有增量 Δ x \Delta x Δx时,相应的函数有增量 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) f(x_0+\Delta x,y_0)-f(x_0,y_0) f(x0+Δx,y0)f(x0,y0)
如果 lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \displaystyle\lim_{\Delta x\rightarrow0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} Δx0limΔxf(x0+Δx,y0)f(x0,y0)存在,则称此极限为函数 z = ( x , y ) z=(x,y) z=(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x x x的偏导数,记作 f x ( x 0 , y 0 ) f_x(x_0,y_0) fx(x0,y0)
如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在区域 D D D内每一点 ( x , y ) (x,y) (x,y)处对 x x x的偏导数都存在,那么这个偏导数就是 x 、 y x、y xy的函数,它就称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)对自变量 x x x的偏导函数,记作 ∂ z ∂ x \displaystyle\frac{\partial z}{\partial x} xz f x ( x , y ) f_x(x,y) fx(x,y)
偏导数的记号是一个整体记号,不能看做分子与分母之商

高阶偏导数
  • 二阶偏导数、混合偏导数……
  • 如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个二阶混合偏导数 ∂ 2 z ∂ y ∂ x \displaystyle\frac{\partial^2z}{\partial y\partial x} yx2z ∂ 2 z ∂ x ∂ y \displaystyle\frac{\partial^2z}{\partial x\partial y} xy2z在区域 D D D内连续,那么在该区域内这两个二阶混合偏导数必相等
拉普拉斯方程

∂ 2 z ∂ x 2 + ∂ 2 z ∂ y 2 = 0 \displaystyle\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=0 x22z+y22z=0 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 = 0 \displaystyle\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}+\frac{\partial^2u}{\partial z^2}=0 x22u+y22u+z22u=0

3、全微分

f ( x + Δ x , y ) − f ( x , y ) ≈ f x ( x , y ) Δ x f(x+\Delta x,y)-f(x,y)\approx f_x(x,y)\Delta x f(x+Δx,y)f(x,y)fx(x,y)Δx
f ( x , y + Δ y ) − f ( x , y ) ≈ f y ( x , y ) Δ y f(x,y+\Delta y)-f(x,y)\approx f_y(x,y)\Delta y f(x,y+Δy)f(x,y)fy(x,y)Δy
上面两式的左端分别叫做二元函数对 x x x和对 y y y的偏增量,而右端分别叫做二元函数对 x x x和对 y y y的偏微分

定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某领域内有定义,如果函数在点 ( x , y ) (x,y) (x,y)的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ),其中 A 、 B A、B AB不依赖于 Δ x 、 Δ y \Delta x、\Delta y ΔxΔy而仅与 x 、 y x、y xy有关, ρ = ( Δ x ) 2 + ( Δ y ) 2 \rho=\sqrt{(\Delta x)^2+(\Delta y)^2} ρ=(Δx)2+(Δy)2 ,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,而 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分,记作d z z z,即d z = A Δ x + B Δ y z=A\Delta x+B\Delta y z=AΔx+BΔy

  • 如果函数在区域 D D D内各点处都可微分,那么称这函数在 D D D内可微分
  • 如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,那么这函数在该点必定连续
定理

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)可微分,则该函数在点 ( x , y ) (x,y) (x,y)的偏导数 ∂ z ∂ x 、 ∂ z ∂ y \displaystyle\frac{\partial z}{\partial x}、\frac{\partial z}{\partial y} xzyz必定存在,且函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的全微分为 d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y dz=\displaystyle\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y dz=xzΔx+yzΔy

定理

如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x 、 ∂ z ∂ y \displaystyle\frac{\partial z}{\partial x}、\frac{\partial z}{\partial y} xzyz在点 ( x , y ) (x,y) (x,y)连续,则函数在该点可微分

  • Δ x 、 Δ y \Delta x、\Delta y ΔxΔy分别记作 d x 、 d y dx、dy dxdy,并分别称为自变量 x 、 y x、y xy的微分,则全微分可写为 d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz=\displaystyle\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy dz=xzdx+yzdy
全微分在近似计算中的应用

4、多元复合函数的求导法则

一元函数与多元函数复合
定理

如果函数 u = φ ( t ) u=\varphi(t) u=φ(t) v = ψ ( t ) v=\psi(t) v=ψ(t)都在点 t t t可导,函数 z = f ( u , v ) z=f(u,v) z=f(u,v)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,则复合函数 z = f [ φ ( t ) , ψ ( t ) ] z=f[\varphi(t),\psi(t)] z=f[φ(t),ψ(t)]在点 t t t可导,且有 d z d t = ∂ z ∂ u d u d t + ∂ z ∂ v d v d t \displaystyle\frac{dz}{dt}=\frac{\partial z}{\partial u}\frac{du}{dt}+\frac{\partial z}{\partial v}\frac{dv}{dt} dtdz=uzdtdu+vzdtdv

多元函数与多元函数复合
定理

如果函数 u = φ ( x , y ) u=\varphi(x,y) u=φ(x,y) v = ψ ( x , y ) v=\psi(x,y) v=ψ(x,y)都在点 ( x , y ) (x,y) (x,y)具有对 x x x及对 y y y的偏导数,函数 z = f ( x . y ) z=f(x.y) z=f(x.y)在对应点 ( u , v ) (u,v) (u,v)具有连续偏导数,则复合函数 z = f [ φ ( x , y ) , ψ ( x , y ) ] z=f[\varphi(x,y),\psi(x,y)] z=f[φ(x,y),ψ(x,y)]在点 ( x , y ) (x,y) (x,y)的两个偏导数都存在,且有
∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x \displaystyle\frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial x} xz=uzxu+vzxv

∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y \displaystyle\frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial y} yz=uzyu+vzyv

全微分形式不变性

5、隐函数求导公式

隐函数存在定理1

设函数 F ( x , y ) F(x,y) F(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某一领域内具有连续偏导数,且 F ( x 0 , y 0 ) = 0 , F y ( x 0 , y 0 ) ≠ 0 F(x_0,y_0)=0,F_y(x_0,y_0)\neq0 F(x0,y0)=0Fy(x0,y0)=0,则方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一领域内恒能唯一确定一个连续且具有连续导数的函数 y = f ( x ) y=f(x) y=f(x),它满足条件 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0),并有 d y d x = − F x F y \displaystyle\frac{dy}{dx}=-\frac{F_x}{F_y} dxdy=FyFx

隐函数存在定理2

设函数 F ( x , y , z ) F(x,y,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0,y_0,z_0) P(x0,y0,z0)的某一领域内具有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 F(x_0,y_0,z_0)=0 F(x0,y0,z0)=0 F z ( x 0 , y 0 , z 0 ) ≠ 0 F_z(x_0,y_0,z_0)\neq0 Fz(x0,y0,z0)=0,则方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0在点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)的某一领域内恒能唯一确定一个连续且具有连续偏导数的函数 z = f ( x , y ) z=f(x,y) z=f(x,y),它满足条件 z 0 = f ( x 0 , y 0 ) z_0=f(x_0,y_0) z0=f(x0,y0),并有 ∂ z ∂ x = − F x F z , ∂ z ∂ y = − F y F z \displaystyle\frac{\partial z}{\partial x}=-\frac{F_x}{F_z},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z} xz=FzFx,yz=FzFy

隐函数存在定理3

F ( x , y , u , v ) F(x,y,u,v) F(x,y,u,v) G ( x , y , u , v ) G(x,y,u,v) G(x,y,u,v)在点 P ( x 0 , y 0 , u 0 , v 0 ) P(x_0,y_0,u_0,v_0) P(x0,y0,u0,v0)的某一领域内具有对各个变量的连续偏导数,又 F ( x 0 , y 0 , u 0 , v 0 ) = 0 F(x_0,y_0,u_0,v_0)=0 F(x0,y0,u0,v0)=0 G ( x 0 , y 0 , u 0 , v 0 ) = 0 G(x_0,y_0,u_0,v_0)=0 G(x0,y0,u0,v0)=0,且偏导数所组成的函数行列式 J = ∂ ( F , G ) ∂ ( u , v ) = ∣ ∂ F ∂ u ∂ F ∂ v ∂ G ∂ u ∂ G ∂ v ∣ J=\displaystyle\frac{\partial(F,G)}{\partial(u,v)}=\begin{vmatrix} \displaystyle\frac{\partial F}{\partial u}&\displaystyle\frac{\partial F}{\partial v}\\ \\ \displaystyle\frac{\partial G}{\partial u}&\displaystyle\frac{\partial G}{\partial v} \end{vmatrix} J=(u,v)(F,G)=uFuGvFvG
在点 P ( x 0 , y 0 , u 0 , v 0 ) P(x_0,y_0,u_0,v_0) P(x0,y0,u0,v0)不等于零,则方程组 F ( x , y , u , v ) = 0 , G ( x , y , u , v ) = 0 F(x,y,u,v)=0,G(x,y,u,v)=0 F(x,y,u,v)=0,G(x,y,u,v)=0在点 ( x 0 , y 0 , u 0 , v 0 ) (x_0,y_0,u_0,v_0) (x0,y0,u0,v0)的某一领域内恒能唯一确定一组连续且具有连续偏导数的函数 u = u ( x , y ) , v = v ( x , y ) u=u(x,y),v=v(x,y) u=u(x,y),v=v(x,y),它们满足条件 u 0 = u ( x 0 , y 0 ) , v 0 = v ( x 0 , y 0 ) u_0=u(x_0,y_0),v_0=v(x_0,y_0) u0=u(x0,y0),v0=v(x0,y0),并有 ∂ u ∂ x = − 1 J ∂ ( F , G ) ∂ ( x , v ) = − ∣ F x F v G x G v ∣ ∣ F u F v G u G v ∣ \displaystyle\frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(x,v)}=-\frac{\begin{vmatrix} F_x&F_v\\ G_x&G_v \end{vmatrix}}{\begin{vmatrix} F_u&F_v\\ G_u&G_v \end{vmatrix}} xu=J1(x,v)(F,G)=FuGuFvGvFxGxFvGv
其余类似

6、多元函数微分学的几何应用

一元向量值函数

空间曲线 Γ \varGamma Γ的参数方程为 { x = φ ( t ) y = ψ ( t ) t ∈ [ α , β ] z = ω ( t ) \begin{cases} x=\varphi(t)\\ y=\psi(t)\qquad t\in[\alpha,\beta]\\ z=\omega(t) \end{cases} x=φ(t)y=ψ(t)t[α,β]z=ω(t)
r → = x i → + y j → + z k → \overrightarrow{r}=x\overrightarrow{i}+y\overrightarrow{j}+z\overrightarrow{k} r =xi +yj +zk f → ( t ) = φ ( t ) i → + ψ ( t ) j → + ω ( t ) k → \overrightarrow{f}(t)=\varphi(t)\overrightarrow{i}+\psi(t)\overrightarrow{j}+\omega(t)\overrightarrow{k} f (t)=φ(t)i +ψ(t)j +ω(t)k
则该方程称为向量方程 r → = f → ( t ) , t ∈ [ α , β ] \overrightarrow{r}=\overrightarrow{f}(t),t\in[\alpha,\beta] r =f (t),t[α,β]

定义

设数集 D ⊂ R D\subset\R DR,则称映射 f → : D → R n \overrightarrow{f}:D\rightarrow\R^n f :DRn为一元向量值函数

定义

设向量值函数 f → ( t ) \overrightarrow{f}(t) f (t)在点 t 0 t_0 t0的某一去心领域内有定义,如果存在一个常向量 r 0 → \overrightarrow{r_0} r0 ,对于任意给定的正数 ϵ \epsilon ϵ,总存在正数 δ \delta δ,使得当 t t t满足 0 < ∣ t − t 0 ∣ < δ 0<|t-t_0|<\delta 0<tt0<δ时,对应的函数值 f → ( t ) \overrightarrow{f}(t) f (t)都满足不等式 ∣ f → ( t ) − r 0 → ∣ < ϵ |\overrightarrow{f}(t)-\overrightarrow{r_0}|<\epsilon f (t)r0 <ϵ,那么 r 0 → \overrightarrow{r_0} r0 就叫做向量值函数 f → ( t ) \overrightarrow{f}(t) f (t) t → t 0 t\rightarrow t_0 tt0时的极限,记作 lim ⁡ t → t 0 f → ( t ) = r 0 → \displaystyle\lim_{t\rightarrow t_0}\overrightarrow{f}(t)=\overrightarrow{r_0} tt0limf (t)=r0
lim ⁡ t → t 0 f → ( t ) = f → ( t 0 ) \displaystyle\lim_{t\rightarrow t_0}\overrightarrow{f}(t)=\overrightarrow{f}(t_0) tt0limf (t)=f (t0),则称向量值函数 f → ( t ) \overrightarrow{f}(t) f (t) t 0 t_0 t0连续

定义

设向量值函数 r → = f → ( t ) \overrightarrow{r}=\overrightarrow{f}(t) r =f (t)在点 t 0 t_0 t0的某一领域内有定义,如果 lim ⁡ Δ t → 0 Δ r → Δ t = lim ⁡ Δ t → 0 f → ( t 0 + Δ t ) − f → ( t 0 ) Δ t \displaystyle\lim_{\Delta t\rightarrow0}\frac{\Delta \overrightarrow{r}}{\Delta t}=\lim_{\Delta t\rightarrow 0}\frac{\overrightarrow{f}(t_0+\Delta t)-\overrightarrow{f}(t_0)}{\Delta t} Δt0limΔtΔr =Δt0limΔtf (t0+Δt)f (t0)存在,那么就称这个极限向量为向量值函数 r → = f → ( t ) \overrightarrow{r}=\overrightarrow{f}(t) r =f (t) t 0 t_0 t0处的导数,记作 f ′ → ( t 0 ) \overrightarrow{f^\prime}(t_0) f (t0)

向量值函数导数运算法则
  1. d d t C → = 0 → \displaystyle\frac{d}{dt}\overrightarrow{C}=\overrightarrow{0} dtdC =0

  2. d d t [ c u → ( t ) ] = c u ′ → ( t ) \displaystyle\frac{d}{dt}[c\overrightarrow{u}(t)]=c\overrightarrow{u^\prime}(t) dtd[cu (t)]=cu (t)

  3. d d t [ u → ( t ) ± v → ( t ) ] = u ′ → ( t ) ± v ′ → ( t ) \displaystyle\frac{d}{dt}[\overrightarrow{u}(t)\pm\overrightarrow{v}(t)]=\overrightarrow{u^\prime}(t)\pm\overrightarrow{v^\prime}(t) dtd[u (t)±v (t)]=u (t)±v (t)

  4. d d t [ φ ( t ) u → ( t ) ] = φ ′ ( t ) u → ( t ) + φ ( t ) u ′ → ( t ) \displaystyle\frac{d}{dt}[\varphi(t)\overrightarrow{u}(t)]=\varphi^\prime(t)\overrightarrow{u}(t)+\varphi(t)\overrightarrow{u^\prime}(t) dtd[φ(t)u (t)]=φ(t)u (t)+φ(t)u (t)

  5. d d t [ u → ( t ) ⋅ v → ( t ) ] = u ′ → ( t ) ⋅ v → ( t ) + u → ( t ) ⋅ v ′ → ( t ) \displaystyle\frac{d}{dt}[\overrightarrow{u}(t)\cdot\overrightarrow{v}(t)]=\overrightarrow{u^\prime}(t)\cdot\overrightarrow{v}(t)+\overrightarrow{u}(t)\cdot\overrightarrow{v^\prime}(t) dtd[u (t)v (t)]=u (t)v (t)+u (t)v (t)

  6. d d t [ u → ( t ) × v → ( t ) ] = u ′ → ( t ) × v → ( t ) + u → ( t ) × v ′ → ( t ) \displaystyle\frac{d}{dt}[\overrightarrow{u}(t)\times\overrightarrow{v}(t)]=\overrightarrow{u^\prime}(t)\times\overrightarrow{v}(t)+\overrightarrow{u}(t)\times\overrightarrow{v^\prime}(t) dtd[u (t)×v (t)]=u (t)×v (t)+u (t)×v (t)

  7. d d t u → [ φ ( t ) ] = φ ′ ( t ) u ′ → [ φ ( t ) ] \displaystyle\frac{d}{dt}\overrightarrow{u}[\varphi(t)]=\varphi^\prime(t)\overrightarrow{u^\prime}[\varphi(t)] dtdu [φ(t)]=φ(t)u [φ(t)]
    不论 Δ t > 0 \Delta t>0 Δt>0 Δ t < 0 \Delta t<0 Δt<0,向量 Δ r → Δ t = 1 Δ t Δ r → \displaystyle\frac{\Delta \overrightarrow{r}}{\Delta t}=\frac{1}{\Delta t}\Delta \overrightarrow{r} ΔtΔr =Δt1Δr 的指向总与 t t t的增长方向一致
空间曲线的切线与法平面

设空间曲线 Γ \varGamma Γ的参数方程为 { x = φ ( t ) y = ψ ( t ) t ∈ [ α , β ] z = ω ( t ) \begin{cases} x=\varphi(t)\\ y=\psi(t)\qquad t\in[\alpha,\beta]\\ z=\omega(t) \end{cases} x=φ(t)y=ψ(t)t[α,β]z=ω(t)

  • 曲线 Γ \varGamma Γ在点 M M M处切线方程为 x − x 0 φ ′ ( t 0 ) = y − y 0 ψ ′ ( t 0 ) = z − z 0 ω ′ ( t 0 ) \displaystyle\frac{x-x_0}{\varphi^\prime(t_0)}=\frac{y-y_0}{\psi^\prime(t_0)}=\frac{z-z_0}{\omega^\prime(t_0)} φ(t0)xx0=ψ(t0)yy0=ω(t0)zz0
  • 法平面方程为
    φ ′ ( t 0 ) ( x − x 0 ) + ψ ′ ( t 0 ) ( y − y 0 ) + ω ′ ( t 0 ) ( z − z 0 ) = 0 \varphi^\prime(t_0)(x-x_0)+\psi^\prime(t_0)(y-y_0)+\omega^\prime(t_0)(z-z_0)=0 φ(t0)(xx0)+ψ(t0)(yy0)+ω(t0)(zz0)=0

如果空间曲线 Γ \varGamma Γ的方程以
{ y = φ ( x ) z = ψ ( x ) \begin{cases} y=\varphi(x)\\ z=\psi(x) \end{cases} {y=φ(x)z=ψ(x)
的形式给出,则

  • 曲线 Γ \varGamma Γ在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)处的切线方程为 x − x 0 1 = y − y 0 φ ′ ( x 0 ) = z − z 0 ψ ′ ( x 0 ) \displaystyle\frac{x-x_0}{1}=\frac{y-y_0}{\varphi^\prime(x_0)}=\frac{z-z_0}{\psi^\prime(x_0)} 1xx0=φ(x0)yy0=ψ(x0)zz0
  • 法平面方程为 ( x − x 0 ) + φ ′ ( x 0 ) ( y − y 0 ) + ψ ′ ( x 0 ) ( z − z 0 ) = 0 (x-x_0)+\varphi^\prime(x_0)(y-y_0)+\psi^\prime(x_0)(z-z_0)=0 (xx0)+φ(x0)(yy0)+ψ(x0)(zz0)=0

设空间曲线 Γ \varGamma Γ的方程以
{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases} {F(x,y,z)=0G(x,y,z)=0
的形式给出,这时方程组在点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)的某一领域内确定了一组函数 y = φ ( x ) , z = ψ ( x ) y=\varphi(x),z=\psi(x) y=φ(x),z=ψ(x)
对方程组两边分别对 x x x求全导数,,可解得切向量 T → \overrightarrow{T} T
T 1 → = { ∣ F y F z G y G z ∣ M , ∣ F z F x G z G x ∣ M ∣ F x F y G x G y ∣ M } \overrightarrow{T_1}=\left\lbrace\begin{vmatrix} F_y&F_z\\ G_y&G_z \end{vmatrix}_M, \begin{vmatrix} F_z&F_x\\ G_z&G_x \end{vmatrix}_M \begin{vmatrix} F_x&F_y\\ G_x&G_y \end{vmatrix}_M \right\rbrace T1 ={FyGyFzGzM,FzGzFxGxMFxGxFyGyM}

曲面的切平面与法线
  • 切平面方程: F x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0
  • 法线方程: x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \displaystyle\frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0
  • 曲面的法向量: n → = ( F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) ) \overrightarrow{n}=(F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)) n =(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))

对曲面方程: z = f ( x , y ) z=f(x,y) z=f(x,y)

  • 法向量为: n → = ( f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) , − 1 ) \overrightarrow{n}=(f_x(x_0,y_0),f_y(x_0,y_0),-1) n =(fx(x0,y0),fy(x0,y0),1)
  • 切平面方程为: z − z 0 = f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0) zz0=fx(x0,y0)(xx0)+fy(x0,y0)(yy0)
  • 设曲面法向量的方向角为 α , β , γ \alpha,\beta,\gamma α,β,γ,则法向量的方向余弦为 cos ⁡ α = − f x 1 + f x 2 + f y 2 , cos ⁡ β = − f y 1 + f x 2 + f y 2 , cos ⁡ γ = 1 1 + f x 2 + f y 2 \cos \alpha=\displaystyle\frac{-f_x}{\sqrt{1+f_x^2+f_y^2}},\cos\beta=\frac{-f_y}{\sqrt{1+f_x^2+f^2_y}},\cos\gamma=\frac{1}{\sqrt{1+f_x^2+f_y^2}} cosα=1+fx2+fy2 fx,cosβ=1+fx2+fy2 fy,cosγ=1+fx2+fy2 1

7、方向导数与梯度

方向导数

l l l x O y xOy xOy平面上以 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为始点的一条射线, e i → = ( cos ⁡ α , cos ⁡ β ) \overrightarrow{e_i}=(\cos\alpha,\cos\beta) ei =(cosα,cosβ)是与 l l l同方向的单位向量。设函数 x = f ( x , y ) x=f(x,y) x=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的某个领域 U ( P 0 ) U(P_0) U(P0)内有定义, P P P l l l上另一点。如果 f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) t \displaystyle\frac{f(x_0+t\cos\alpha,y_0+t\cos\beta)-f(x_0,y_0)}{t} tf(x0+tcosα,y0+tcosβ)f(x0,y0) P P P沿着 l l l趋于 P 0 P_0 P0时极限存在,则称此极限为函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 P_0 P0沿方向 l l l的方向导数,即 ∂ f ∂ l ∣ ( x 0 , y 0 ) = lim ⁡ t → 0 + f ( x 0 + t cos ⁡ α , y 0 + t cos ⁡ β ) − f ( x 0 , y 0 ) t \displaystyle\frac{\partial f}{\partial l}|_{(x_0,y_0)}=\lim_{t\rightarrow0^+}\frac{f(x_0+t\cos\alpha,y_0+t\cos\beta)-f(x_0,y_0)}{t} lf(x0,y0)=t0+limtf(x0+tcosα,y0+tcosβ)f(x0,y0)

定理

如果函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)可微分,那么函数在该点沿任一方向 l l l的方向导数存在,且有 ∂ f ∂ l ∣ ( x 0 , y 0 ) = f x ( x 0 , y 0 ) cos ⁡ α + f y ( x 0 , y 0 ) cos ⁡ β \displaystyle\frac{\partial f}{\partial l}|_{(x_0,y_0)}=f_x(x_0,y_0)\cos\alpha+f_y(x_0,y_0)\cos\beta lf(x0,y0)=fx(x0,y0)cosα+fy(x0,y0)cosβ,其中 cos ⁡ α , cos ⁡ β \cos\alpha,\cos\beta cosαcosβ是方向 l l l的方向余弦
对于三元函数亦如此

梯度

函数 f ( x , y ) f(x,y) f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)的梯度为 g r a d f ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) i → + f y ( x 0 , y 0 ) j → \bold{grad}f(x_0,y_0)=\nabla f(x_0,y_0)=f_x(x_0,y_0)\overrightarrow{i}+f_y(x_0,y_0)\overrightarrow{j} gradf(x0,y0)=f(x0,y0)=fx(x0,y0i +fy(x0,y0)j
其中 ∇ = ∂ ∂ x i → + ∂ ∂ y j → \nabla=\displaystyle\frac{\partial}{\partial x}\overrightarrow{i}+\frac{\partial}{\partial y}\overrightarrow{j} =xi +yj 称为 N a b l a Nabla Nabla算子
方向导数 ∂ f ∂ l ∣ ( x 0 , y 0 ) = ∇ f ( x 0 , y 0 ) ⋅ e i → = ∣ ∇ f ( x 0 , y 0 ) ∣ cos ⁡ θ \displaystyle\frac{\partial f}{\partial l}|_{(x_0,y_0)}=\nabla f(x_0,y_0)\cdot \overrightarrow{e_i}=|\nabla f(x_0,y_0)|\cos\theta lf(x0,y0)=f(x0,y0)ei =f(x0,y0)cosθ,其中 e i → = ( cos ⁡ α , cos ⁡ β ) \overrightarrow{e_i}=(\cos\alpha,\cos\beta) ei =(cosα,cosβ)是与方向 l l l同方向的单位向量, θ = < ∇ f ( x 0 , y 0 ) , e i → > \theta=<\nabla f(x_0,y_0),\overrightarrow{e_i}> θ=<f(x0,y0),ei >

数量场、向量场、势函数、势场的概念

8、多元函数的极值及其求法

多元函数的极值及最大值、最小值

定义 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的定义域为 D D D P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的内点,若存在 P 0 P_0 P0的某个领域 U ( P 0 ) ⊂ D U(P_0)\subset D U(P0)D,使得对于该领域内异于 P 0 P_0 P0的任何点 ( x , y ) (x,y) (x,y),都有 f ( x , y ) < f ( x 0 , y 0 ) f(x,y)<f(x_0,y_0) f(x,y)<f(x0,y0),则称函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)有极大值 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0),点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)称为函数 f ( x , y ) f(x,y) f(x,y)的极大值点,相反有极小值和极小值点的概念。

定理(必要条件)

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)具有偏导数,且在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)有极值,则有 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0

定理(充分条件)

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某领域内连续且有一阶及二阶连续偏导数,又 f x ( x 0 , y 0 ) = 0 , f y ( x 0 , y 0 ) = 0 f_x(x_0,y_0)=0,f_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0,令 f x x ( x 0 , y 0 ) = A , f x y ( x 0 , y 0 ) = B , f y y ( x 0 , y 0 ) = C f_{xx}(x_0,y_0)=A,f_{xy}(x_0,y_0)=B,f_{yy}(x_0,y_0)=C fxx(x0,y0)=A,fxy(x0,y0)=B,fyy(x0,y0)=C,则 f ( x , y ) f(x,y) f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处是否取得极值的条件如下:

  1. A C − B 2 > 0 AC-B^2>0 ACB2>0时具有极值,且当 A < 0 A<0 A<0时有极大值,当 A < 0 A<0 A<0时有极小值
  2. A C − B 2 < 0 AC-B^2<0 ACB2<0时没有极值
  3. A C − B 2 = 0 AC-B^2=0 ACB2=0时可能有极值,也可能没有极值
条件求值 拉格朗如乘数法

要找函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在附加条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0下的可能极值点,引入拉格朗日函数 L ( x , y ) = f ( x , y ) + λ φ ( x , y ) L(x,y)=f(x,y)+\lambda\varphi(x,y) L(x,y)=f(x,y)+λφ(x,y)其中 λ \lambda λ为参数,联立 { f x ( x , y ) + λ φ x ( x , y ) = 0 f y ( x , y ) + λ φ y ( x , y ) = 0 φ ( x , y ) = 0 \begin{cases} f_x(x,y)+\lambda\varphi_x(x,y)=0\\ f_y(x,y)+\lambda\varphi_y(x,y)=0\\ \varphi(x,y)=0 \end{cases} fx(x,y)+λφx(x,y)=0fy(x,y)+λφy(x,y)=0φ(x,y)=0
由这方程组解出 x , y , λ x,y,\lambda x,y,λ,这样得到的 ( x , y ) (x,y) (x,y)就是函数 f ( x , y ) f(x,y) f(x,y)在附加条件 φ ( x , y ) = 0 \varphi(x,y)=0 φ(x,y)=0下的可能极值点。
可推广到自变量多余两个而条件多于一个的情形

9、二元函数的泰勒公式

定理 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一领域内连续且有直到 ( n + 1 ) (n+1) (n+1)阶的连续偏导数, ( x 0 + h , y 0 + k ) (x_0+h,y_0+k) (x0+h,y0+k)为此领域内任一点,则有
f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + ( h ∂ ∂ x + k ∂ ∂ y ) f ( x 0 , y 0 ) + 1 2 ! ( h ∂ ∂ x + k ∂ ∂ y ) 2 f ( x 0 , y 0 ) + ⋯ ∣ 1 n ! ( h ∂ ∂ x + k ∂ ∂ y ) n f ( x 0 , y 0 ) + 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) ( 0 < θ < 1 ) f(x_0+h,y_0+k)=f(x_0,y_0)+(h\displaystyle\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})f(x_0,y_0)+\frac{1}{2!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2f(x_0,y_0)+\cdots|\frac{1}{n!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^n f(x_0,y_0)+\frac{1}{(n+1)!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}f(x_0+\theta h,y_0+\theta k)\qquad (0<\theta<1) f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+2!1(hx+ky)2f(x0,y0)+n!1(hx+ky)nf(x0,y0)+(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)(0<θ<1)
其中记号 ( h ∂ ∂ x + k ∂ ∂ y ) m f ( x 0 , y 0 ) (h\displaystyle\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^m f(x_0,y_0) (hx+ky)mf(x0,y0)表示 ∑ p = 0 m C m p h p k m − p ∂ m f ∂ x p ∂ y m − p ∣ ( x 0 , y 0 ) \displaystyle\sum^m_{p=0}C^p_mh^pk^{m-p}\frac{\partial^m f}{\partial x^p\partial y^{m-p}}|_{(x_0,y_0)} p=0mCmphpkmpxpympmf(x0,y0)
拉格朗日型余项 R n = 1 ( n + 1 ) ! ( h ∂ ∂ x + k ∂ ∂ y ) n + 1 f ( x 0 + θ h , y 0 + θ k ) ( 0 < θ < 1 ) R_n=\displaystyle\frac{1}{(n+1)!}(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}f(x_0+\theta h,y_0+\theta k)\qquad (0<\theta<1) Rn=(n+1)!1(hx+ky)n+1f(x0+θh,y0+θk)(0<θ<1)
误差估计式 ∣ R n ∣ ⩽ M ( n + 1 ) ! ( ∣ h ∣ + ∣ k ∣ ) n + 1 ⩽ M ( n + 1 ) ! ( 2 ) n + 1 ρ n + 1 |R_n|\leqslant\displaystyle\frac{M}{(n+1)!}(|h|+|k|)^{n+1}\leqslant\frac{M}{(n+1)!}(\sqrt{2})^{n+1}\rho^{n+1} Rn(n+1)!M(h+k)n+1(n+1)!M(2 )n+1ρn+1,其中 ρ = h 2 + k 2 \rho=\sqrt{h^2+k^2} ρ=h2+k2
n = 0 n=0 n=0,得二元函数的拉格朗日中值公式
f ( x 0 + h , y 0 + k ) = f ( x 0 , y 0 ) + h f x ( x 0 + θ h , y 0 + θ k ) + k f y ( x 0 + θ h , y 0 + θ k ) f(x_0+h,y_0+k)=f(x_0,y_0)+hf_x(x_0+\theta h,y_0+\theta k)+kf_y(x_0+\theta h,y_0+\theta k) f(x0+h,y0+k)=f(x0,y0)+hfx(x0+θh,y0+θk)+kfy(x0+θh,y0+θk)

10、最小二乘法

十、重积分

1、二重积分的概念与性质

定义

f ( x , y ) f(x,y) f(x,y)是有界闭区域 D D D上的有界函数,将闭区域 D D D任意分成 n n n个小闭区域 Δ σ 1 , Δ σ 2 , ⋯   , Δ σ n \Delta\sigma_1,\Delta\sigma_2,\cdots,\Delta\sigma_n Δσ1,Δσ2,,Δσn,其中 Δ σ i \Delta\sigma_i Δσi表示第 i i i个小闭区域。在每个 Δ σ i \Delta \sigma_i Δσi上任取一点 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi),作乘积 f ( ξ i , η i ) Δ σ i ( i = 1 , 2 , . . . ) f(\xi_i,\eta_i)\Delta\sigma_i(i=1,2,...) f(ξi,ηi)Δσi(i=1,2,...),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ σ i \displaystyle\sum^n_{i=1}f(\xi_i,\eta_i)\Delta\sigma_i i=1nf(ξi,ηi)Δσi。如果当各小闭区域的直径中的最大值 λ \lambda λ趋于0时,这和的极限总存在,则称此极限为函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的二重积分,记作 ∬ D f ( x , y ) d σ \displaystyle\iint_Df(x,y)d\sigma Df(x,y)dσ
其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数, f ( x , y ) d σ f(x,y)d\sigma f(x,y)dσ叫做被积表达式, d σ d\sigma dσ叫做面积元素, x x x y y y叫做积分变量, D D D叫做积分区域, ∑ i = 1 n f ( ξ i , η i ) Δ σ i \displaystyle\sum^n_{i=1}f(\xi_i,\eta_i)\Delta\sigma_i i=1nf(ξi,ηi)Δσi叫做积分和。有时也把面积元素 d σ d\sigma dσ记作 d x d y dxdy dxdy

二重积分的性质
  1. α 、 β \alpha、\beta αβ为常数,则
    ∬ D [ α f ( x , y ) + β g ( x , y ) ] d σ = α ∬ D f ( x , y ) d σ + β ∬ D g ( x , y ) d σ \displaystyle\iint_D[\alpha f(x,y)+\beta g(x,y)]d\sigma=\alpha\iint_D f(x,y)d\sigma+\beta\iint_Dg(x,y)d\sigma D[αf(x,y)+βg(x,y)]dσ=αDf(x,y)dσ+βDg(x,y)dσ
  2. ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \displaystyle\iint_Df(x,y)d\sigma=\iint_{D_1}f(x,y)d\sigma+\iint_{D_2}f(x,y)d\sigma Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ
  3. ∬ D 1 ⋅ d σ = σ \displaystyle\iint_D1\cdot d\sigma=\sigma D1dσ=σ
  4. 如果在 D D D上, f ( x , y ) ⩽ φ ( x , y ) f(x,y)\leqslant\varphi(x,y) f(x,y)φ(x,y),则有 ∬ D f ( x , y ) d σ ⩽ ∬ D φ ( x , y ) d σ \displaystyle\iint_Df(x,y)d\sigma\leqslant\iint_D\varphi(x,y)d\sigma Df(x,y)dσDφ(x,y)dσ
  5. ∣ ∬ D f ( x , y ) d σ ∣ ⩽ ∬ D ∣ f ( x , y ) ∣ d σ |\displaystyle\iint_Df(x,y)d\sigma|\leqslant\iint_D|f(x,y)|d\sigma Df(x,y)dσDf(x,y)dσ
  6. M 、 m M、m Mm分别是 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上的最大值和最小值, σ \sigma σ D D D的面积,则有 m σ ⩽ ∬ D f ( x , y ) d σ ⩽ M σ m\sigma\leqslant\displaystyle\iint_Df(x,y)d\sigma\leqslant M\sigma mσDf(x,y)dσMσ
  7. (二重积分的中值定理)设函数 f ( x , y ) f(x,y) f(x,y)在闭区域 D D D上连续, σ \sigma σ D D D的面积,则在 D D D上至少存在一点 ( ξ , η ) (\xi,\eta) (ξ,η),使得 ∬ D f ( x , y ) d σ = f ( ξ , η ) ⋅ σ \displaystyle\iint_Df(x,y)d\sigma=f(\xi,\eta)\cdot\sigma Df(x,y)dσ=f(ξ,η)σ

2、二重积分计算法

利用直角坐标计算

设积分区域 D D D可用不等式 φ 1 ( x ) ⩽ y ⩽ φ 2 ( x ) , a ⩽ x ⩽ b \varphi_1(x)\leqslant y\leqslant\varphi_2(x),a\leqslant x\leqslant b φ1(x)yφ2(x),axb来表示,则 ∬ D f ( x , y ) d σ = ∫ a b [ ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y ] d x \displaystyle\iint_Df(x,y)d\sigma=\int^b_a[\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)dy]dx Df(x,y)dσ=ab[φ1(x)φ2(x)f(x,y)dy]dx
上式右端的积分叫做先对 y y y,后对 x x x的二次积分
类似地,如果积分区域 D D D可以用不等式 ψ 1 ( y ) ⩽ x ⩽ ψ 2 ( y ) , c ⩽ y ⩽ d \psi_1(y)\leqslant x\leqslant\psi_2(y),c\leqslant y\leqslant d ψ1(y)xψ2(y),cyd来表示,则 ∬ D f ( x , y ) d σ = ∫ c d [ ∫ ψ 1 ( y ) ψ 2 ( y ) f ( x , y ) d x ] d y \displaystyle\iint_Df(x,y)d\sigma=\int_c^d[\int^{\psi_2(y)}_{\psi_1(y)}f(x,y)dx]dy Df(x,y)dσ=cd[ψ1(y)ψ2(y)f(x,y)dx]dy
上述区域分别称为 X X X型区域和 Y Y Y型区域

利用极坐标计算

∬ D f ( x , y ) d x d y = ∬ D f ( ρ cos ⁡ θ , ρ sin ⁡ θ ) ρ d ρ d θ \displaystyle\iint_Df(x,y)dxdy=\iint_Df(\rho\cos\theta,\rho\sin\theta)\rho d\rho d\theta Df(x,y)dxdy=Df(ρcosθ,ρsinθ)ρdρdθ

二重积分换元法

f ( x , y ) f(x,y) f(x,y) x O y xOy xOy平面上的闭区域 D D D上连续,变换 T : x = x ( u , v ) , y = y ( u , v ) T:x=x(u,v),y=y(u,v) T:x=x(u,v),y=y(u,v) u O v uOv uOv平面上的闭区域 D ′ D^\prime D变为 x O y xOy xOy平面上的 D D D,且满足

  1. x ( u , v ) , y ( u , v ) x(u,v),y(u,v) x(u,v),y(u,v) D ′ D^\prime D上具有一阶连续偏导数
  2. D ′ D^\prime D上雅可比式 J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) ≠ 0 J(u,v)=\displaystyle\frac{\partial(x,y)}{\partial(u,v)}\neq0 J(u,v)=(u,v)(x,y)=0
  3. 变换 T : D ′ → D T:D^\prime\rightarrow D T:DD是一对一的

则有 ∬ D f ( x , y ) d x d y = ∬ D f [ x ( u , v ) , y ( u , v ) ] ∣ J ( u , v ) ∣ d u d v \displaystyle\iint_Df(x,y)dxdy=\iint_Df[x(u,v),y(u,v)]|J(u,v)|dudv Df(x,y)dxdy=Df[x(u,v),y(u,v)]J(u,v)dudv

3、三重积分

定义

f ( x , y , z ) f(x,y,z) f(x,y,z)是空间有界闭区域 Ω \Omega Ω上的有界函数,将 Ω \Omega Ω任意分成 n n n个小闭区域 Δ v 1 , Δ v 2 , ⋯   , Δ v n \Delta v_1,\Delta v_2,\cdots,\Delta v_n Δv1,Δv2,,Δvn其中 Δ v i \Delta v_i Δvi表示第 i i i个小闭区域,也表示它的体积。在每一个 Δ v i \Delta v_i Δvi上任取一点 ( ξ i , η i , ζ i ) (\xi_i,\eta_i,\zeta_i) (ξi,ηi,ζi),作乘积 f ( ξ i , η i , ζ i ) Δ v i ( i = 1 , 2 , ⋯   , n ) f(\xi_i,\eta_i,\zeta_i)\Delta v_i(i=1,2,\cdots,n) f(ξi,ηi,ζi)Δvi(i=1,2,,n)并作和 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ v i \displaystyle\sum^n_{i=1}f(\xi_i,\eta_i,\zeta_i)\Delta v_i i=1nf(ξi,ηi,ζi)Δvi,如果当各小闭区域直径中的最大值 λ \lambda λ趋于0时这和的极限总存在,则称此极限为函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在闭区域 Ω \Omega Ω上的三重积分,记作 ∭ Ω f ( x , y . z ) d v \displaystyle\iiint_\Omega f(x,y.z)dv Ωf(x,y.z)dv
有时也把 d v dv dv记作 d x d y d z dxdydz dxdydz

利用直角坐标计算

把三重积分化为先对 z z z,次对 y y y,最后对 x x x的三次积分:
∭ Ω f ( x , y , z ) d v = ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \displaystyle\iiint_\Omega f(x,y,z)dv=\int^b_adx\int_{y_1(x)}^{y_2(x)}dy\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz Ωf(x,y,z)dv=abdxy1(x)y2(x)dyz1(x,y)z2(x,y)f(x,y,z)dz

利用柱面坐标计算

∭ Ω f ( x , y , z ) d x d y d z = ∭ Ω F ( ρ , θ , z ) ρ d ρ d θ d z \displaystyle\iiint_\Omega f(x,y,z)dxdydz=\iiint_\Omega F(\rho,\theta,z)\rho d\rho d\theta dz Ωf(x,y,z)dxdydz=ΩF(ρ,θ,z)ρdρdθdz

利用球坐标计算

∭ Ω f ( x , y , z ) = ∭ Ω F ( r , φ , θ ) r 2 sin ⁡ φ d r d φ d θ \displaystyle\iiint_\Omega f(x,y,z)=\iiint_\Omega F(r,\varphi,\theta)r^2\sin\varphi drd\varphi d\theta Ωf(x,y,z)=ΩF(r,φ,θ)r2sinφdrdφdθ

4、重积分的应用

曲面面积

A = ∬ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y A=\displaystyle\iint_D\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}dxdy A=D1+(xz)2+(yz)2 dxdy

利用曲面的参数方程求曲面的面积

若曲面 S S S由参数方程
{ x = x ( u , v ) y = y ( u , v ) ( u , v ) ∈ D z = z ( u , v ) \begin{cases} x=x(u,v)\\ y=y(u,v)\qquad(u,v)\in D\\ z=z(u,v) \end{cases} x=x(u,v)y=y(u,v)(u,v)Dz=z(u,v)
给出,则曲面 S S S的面积 A = ∬ D ∥ r u → × r v → ∥ d u d v A=\displaystyle\iint_D\Vert\overrightarrow{r_u}\times\overrightarrow{r_v}\Vert dudv A=Dru ×rv dudv

质心

平面薄片质心坐标为
x ‾ = M y M = ∬ D x μ ( x , y ) d σ ∬ D μ ( x , y ) d σ \overline{x}=\displaystyle\frac{M_y}{M}=\frac{\displaystyle\iint_D x\mu(x,y)d\sigma}{\displaystyle\iint_D\mu(x,y)d\sigma} x=MMy=Dμ(x,y)dσDxμ(x,y)dσ

y ‾ = M x M = ∬ D y μ ( x , y ) d σ ∬ D μ ( x , y ) d σ \overline{y}=\displaystyle\frac{M_x}{M}=\frac{\displaystyle\iint_D y\mu(x,y)d\sigma}{\displaystyle\iint_D\mu(x,y)d\sigma} y=MMx=Dμ(x,y)dσDyμ(x,y)dσ
空间物体质心坐标为
x ‾ = 1 M ∭ Ω x ρ ( x , y , z ) d v \overline{x}=\displaystyle\frac{1}{M}\iiint_\Omega x\rho(x,y,z)dv x=M1Ωxρ(x,y,z)dv

y ‾ = 1 M ∭ Ω y ρ ( x , y , z ) d v \overline{y}=\displaystyle\frac{1}{M}\iiint_\Omega y\rho(x,y,z)dv y=M1Ωyρ(x,y,z)dv

z ‾ = 1 M ∭ Ω z ρ ( x , y , z ) d v \overline{z}=\displaystyle\frac{1}{M}\iiint_\Omega z\rho(x,y,z)dv z=M1Ωzρ(x,y,z)dv

转动惯量

I x = ∬ D y 2 μ ( x , y ) d σ I_x=\displaystyle\iint_Dy^2\mu(x,y)d\sigma Ix=Dy2μ(x,y)dσ

I y = ∬ D x 2 μ ( x , y ) d σ I_y=\displaystyle\iint_Dx^2\mu(x,y)d\sigma Iy=Dx2μ(x,y)dσ

I x = ∭ Ω ( y 2 + z 2 ) ρ ( x , y , z ) d v I_x=\displaystyle\iiint_\Omega(y^2+z^2)\rho(x,y,z)dv Ix=Ω(y2+z2)ρ(x,y,z)dv

I y = ∭ Ω ( x 2 + z 2 ) ρ ( x , y , z ) d v I_y=\displaystyle\iiint_\Omega(x^2+z^2)\rho(x,y,z)dv Iy=Ω(x2+z2)ρ(x,y,z)dv

I z = ∭ Ω ( y 2 + x 2 ) ρ ( x , y , z ) d v I_z=\displaystyle\iiint_\Omega(y^2+x^2)\rho(x,y,z)dv Iz=Ω(y2+x2)ρ(x,y,z)dv

引力

F → = ( F x , F y , F z ) = ( ∭ Ω G ρ ( x , y , z ) ( x − x 0 ) r 3 d v , ∭ Ω G ρ ( x , y , z ) ( y − y 0 ) r 3 d v , ∭ Ω G ρ ( x , y , z ) ( z − z 0 ) r 3 d v ) \overrightarrow{F}=(F_x,F_y,F_z)=(\displaystyle\iiint_\Omega\frac{G\rho(x,y,z)(x-x_0)}{r^3}dv,\iiint_\Omega\frac{G\rho(x,y,z)(y-y_0)}{r^3}dv,\iiint_\Omega\frac{G\rho(x,y,z)(z-z_0)}{r^3}dv) F =(Fx,Fy,Fz)=(Ωr3Gρ(x,y,z)(xx0)dv,Ωr3Gρ(x,y,z)(yy0)dv,Ωr3Gρ(x,y,z)(zz0)dv)

5、含参变量的积分

十一、曲线积分与曲面积分

1、对弧长的曲线积分

定义

L L L x O y xOy xOy面内的一条光滑曲线弧,函数 f ( x , y ) f(x,y) f(x,y) L L L上有界,在 L L L上任意插入一点列 M 1 , M 2 , ⋯   , M n − 1 M_1,M_2,\cdots,M_{n-1} M1,M2,,Mn1 L L L分成 n n n个小段。设第 i i i个小段的长度为 Δ s i \Delta s_i Δsi。又 ( ξ i , η i ) (\xi_i,\eta_i) (ξi,ηi)为第 i i i个小段上任意取定的一点,作乘积 f ( ξ i , η i ) Δ s i ( i = 1 , 2 , ⋯   , n ) f(\xi_i,\eta_i)\Delta s_i\quad(i=1,2,\cdots,n) f(ξi,ηi)Δsi(i=1,2,,n),并作和 ∑ i = 1 n f ( ξ i , η i ) Δ s i \displaystyle\sum^n_{i=1}f(\xi_i,\eta_i)\Delta s_i i=1nf(ξi,ηi)Δsi。如果当各小弧段的长度的最大值 λ → 0 \lambda\rightarrow0 λ0时,这和的极限总存在,则称此极限为函数 f ( x , y ) f(x,y) f(x,y)在曲线弧 L L L上对弧长的曲线积分,记作 ∫ L f ( x , y ) d s \displaystyle\int_Lf(x,y)ds Lf(x,y)ds
其中 f ( x , y ) f(x,y) f(x,y)叫做被积函数, L L L叫做积分弧段

  • 如果 L L L是闭曲线,那么函数 f ( x , y ) f(x,y) f(x,y)在闭曲线 L L L上对弧长的曲线积分记为 ∮ L f ( x , y ) d s \displaystyle\oint_Lf(x,y)ds Lf(x,y)ds

性质和二重积分类似

计算
  • f ( x , y ) f(x,y) f(x,y)在曲线弧 L L L上有定义且连续, L L L的参数方程为
    { x = φ ( t ) y = ψ ( t ) ( α ⩽ t ⩽ β ) \begin{cases} x=\varphi(t)\\ y=\psi(t) \end{cases}\qquad(\alpha\leqslant t\leqslant\beta) {x=φ(t)y=ψ(t)(αtβ)
    ∫ L f ( x , y ) d s = ∫ α β f [ φ ( t ) , ψ ( t ) ] φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ( α < β ) \displaystyle\int_Lf(x,y)ds=\int_\alpha^\beta f[\varphi(t),\psi(t)]\sqrt{\varphi^{\prime2}(t)+\psi^{\prime2}(t)}dt\qquad(\alpha<\beta) Lf(x,y)ds=αβf[φ(t),ψ(t)]φ2(t)+ψ2(t) dt(α<β)
    定积分的下限 α \alpha α一定要小于上限 β \beta β
  • 空间弧:
    ∫ Γ f ( x , y , z ) d s = ∫ α β f [ φ ( t ) , ψ ( t ) , ω ( t ) ] φ ′ 2 ( t ) + ψ ′ 2 ( t ) + ω ′ 2 ( t ) d t \displaystyle\int_\varGamma f(x,y,z)ds=\int_\alpha^\beta f[\varphi(t),\psi(t),\omega(t)]\sqrt{\varphi^{\prime2}(t)+\psi^{\prime2}(t)+\omega^{\prime2}(t)}dt Γf(x,y,z)ds=αβf[φ(t),ψ(t),ω(t)]φ2(t)+ψ2(t)+ω2(t) dt

2、对坐标的曲线积分

∫ L P ( x , y ) d x + Q ( x , y ) d y \displaystyle\int_LP(x,y)dx+Q(x,y)dy LP(x,y)dx+Q(x,y)dy ∫ L F → ( x , y ) ⋅ d r → \displaystyle\int_L\overrightarrow{F}(x,y)\cdot d\overrightarrow{r} LF (x,y)dr

性质

L L L是有向光滑曲线弧, L − L^- L L L L的反向曲线弧,则
∫ L − F → ( x , y ) d r → = − ∫ L F → ( x , y ) ⋅ d r → \displaystyle\int_{L^-}\overrightarrow{F}(x,y)d\overrightarrow{r}=-\int_L\overrightarrow{F}(x,y)\cdot d\overrightarrow{r} LF (x,y)dr =LF (x,y)dr

计算

P ( x , y ) P(x,y) P(x,y) Q ( x , y ) Q(x,y) Q(x,y)在有向曲线弧 L L L上有定义且连续, L L L的参数方程为 { x = φ ( t ) y = ψ ( t ) \begin{cases} x=\varphi(t)\\ y=\psi(t) \end{cases} {x=φ(t)y=ψ(t),则
∫ P ( x , y ) d x + Q ( x , y ) d y = ∫ α β { P [ φ ( t ) , ψ ( t ) ] φ ′ ( t ) + Q [ φ ( t ) , ψ ( t ) ] ψ ′ ( t ) } d t \displaystyle\int_P(x,y)dx+Q(x,y)dy=\int_\alpha^\beta\{P[\varphi(t),\psi(t)]\varphi^\prime(t)+Q[\varphi(t),\psi(t)]\psi^\prime(t)\}dt P(x,y)dx+Q(x,y)dy=αβ{P[φ(t),ψ(t)]φ(t)+Q[φ(t),ψ(t)]ψ(t)}dt
下限 α \alpha α对应于 L L L的起点,上限 β \beta β对应于 L L L的终点, α \alpha α不一定小于 β \beta β

两类曲线积分之间的联系

∫ L P d x + Q d y = ∫ L ( P cos ⁡ α + Q cos ⁡ β ) d s \displaystyle\int_LPdx+Qdy=\int_L(P\cos\alpha+Q\cos\beta)ds LPdx+Qdy=L(Pcosα+Qcosβ)ds,其中 α ( x , y ) 、 β ( x , y ) \alpha(x,y)、\beta(x,y) α(x,y)β(x,y)为有向曲线弧 L L L在点 ( x , y ) (x,y) (x,y)处的切向量的方向角
∫ L F → d r → = ∫ L F → ⋅ τ → d s \displaystyle\int_L\overrightarrow{F}d\overrightarrow{r}=\int_L\overrightarrow{F}\cdot\overrightarrow{\tau}ds LF dr =LF τ ds
其中 τ → = φ ′ ( t ) i → + ψ ′ ( t ) j → \overrightarrow{\tau}=\varphi^\prime(t)\overrightarrow{i}+\psi^\prime(t)\overrightarrow{j} τ =φ(t)i +ψ(t)j
其方向余弦为 cos ⁡ α = φ ′ ( t ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) , cos ⁡ β = ψ ′ ( t ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) \cos\alpha=\displaystyle\frac{\varphi^\prime(t)}{\sqrt{\varphi^{\prime2}(t)+\psi^{\prime2}(t)}},\cos\beta=\frac{\psi^\prime(t)}{\sqrt{\varphi^{\prime2}(t)+\psi^{\prime2}(t)}} cosα=φ2(t)+ψ2(t) φ(t),cosβ=φ2(t)+ψ2(t) ψ(t)

3、格林公式及其应用

D D D为平面区域,如果 D D D内任一闭曲线所围的部分都属于 D D D,则称 D D D为平面单连通区域,否则称为复连通区域

定理

设闭区域 D D D由分段光滑的曲线 L L L围成,函数 P ( x , y ) P(x,y) P(x,y) Q ( x , y ) Q(x,y) Q(x,y) D D D上具有一阶连续偏导数,则有
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y \displaystyle\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy=\oint_LPdx+Qdy D(xQyP)dxdy=LPdx+Qdy,其中 L L L D D D的取正向的边界曲线
P = − y , Q = x P=-y,Q=x P=y,Q=x,即得 2 ∬ D d x d y = ∮ L x d y − y d x 2\displaystyle\iint_Ddxdy=\oint _Lxdy-ydx 2Ddxdy=Lxdyydx

平面上曲线积分与路径无关的条件
定理

设区域 G G G是一个单连通域,函数 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y) G G G内具有一阶连续偏导数,则曲线积分 ∫ L P d x + Q d y \displaystyle\int_LPdx+Qdy LPdx+Qdy G G G内与路径无关的充分必要条件是 ∂ P ∂ y = ∂ Q ∂ x \displaystyle\frac{\partial P}{\partial y }=\frac{\partial Q}{\partial x} yP=xQ G G G内恒成立

  • 破坏函数连续性条件的点称为奇点
二元函数的全微分求积
定理

设区域 G G G是一个单连通域,函数 P ( x , y ) 、 Q ( x , y ) P(x,y)、Q(x,y) P(x,y)Q(x,y) G G G内具有一阶连续偏导数,则 P ( x , y ) d x + Q ( x , y ) d y P(x,y)dx+Q(x,y)dy P(x,y)dx+Q(x,y)dy G G G内为某一函数 u ( x , y ) u(x,y) u(x,y)的全微分的充分必要条件是 ∂ P ∂ y = ∂ Q ∂ x \displaystyle\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ G G G内恒成立

推论

设区域 G G G是一个单连通域,函数 P ( x , y ) 、 Q ( x , y ) P(x,y)、Q(x,y) P(x,y)Q(x,y) G G G内具有一阶连续偏导数,则曲线积分 ∫ L P d x + Q d y \displaystyle\int_LPdx+Qdy LPdx+Qdy G G G内与路径无关的充分必要条件是:在 G G G内存在函数 u ( x , y ) u(x,y) u(x,y),使 d u = P d x + Q d y du=Pdx+Qdy du=Pdx+Qdy
一个微分方程写成 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0形式后,如果它的左端恰好是某一个函数 u ( x , y ) u(x,y) u(x,y)的全微分,那么该方程就叫做全微分方程
其通解为 u ( x , y ) = ∫ ( x 0 , y 0 ) ( x , y ) P ( x , y ) d x + Q ( x , y ) d y = C u(x,y)=\displaystyle\int^{(x,y)}_{(x_0,y_0)}P(x,y)dx+Q(x,y)dy=C u(x,y)=(x0,y0)(x,y)P(x,y)dx+Q(x,y)dy=C其中 x 0 , y 0 x_0,y_0 x0,y0是在区域 G G G内适当选定的点的坐标
也可用偏积分的方法求解

曲线积分的基本定理

若曲线积分 ∫ L F → ⋅ d r → \displaystyle\int_L\overrightarrow{F}\cdot d\overrightarrow{r} LF dr 在区域 G G G内与积分路径无关,则称向量场 F → \overrightarrow{F} F 为保守场

定理

F → ( x , y ) = P ( x , y ) i → + Q ( x , y ) j → \overrightarrow{F}(x,y)=P(x,y)\overrightarrow{i}+Q(x,y)\overrightarrow{j} F (x,y)=P(x,y)i +Q(x,y)j 是平面区域 G G G内的一个向量场, P ( x , y ) 、 Q ( x , y ) P(x,y)、Q(x,y) P(x,y)Q(x,y)都在 G G G内连续,且存在一个数量函数 f ( x , y ) f(x,y) f(x,y),使得 F → = ∇ f \overrightarrow{F}=\nabla f F =f,则曲线积分 ∫ L F → ⋅ d r → \displaystyle\int_L\overrightarrow{F}\cdot d\overrightarrow{r} LF dr G G G内与路径无关,且 ∫ L F → ⋅ d r → = f ( B ) − f ( A ) \displaystyle\int_L\overrightarrow{F}\cdot d\overrightarrow{r}=f(B)-f(A) LF dr =f(B)f(A),其中 L L L是位于 G G G内起点为 A A A,终点为 B B B的任一分段光滑曲线

4、对面积的曲面积分

定义 ∬ Σ f ( x , y , z ) d S = lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ S i \displaystyle\iint_\Sigma f(x,y,z)dS=\lim_{\lambda\rightarrow0}\sum^n_{i=1}f(\xi_i,\eta_i,\zeta_i)\Delta S_i Σf(x,y,z)dS=λ0limi=1nf(ξi,ηi,ζi)ΔSi

计算

∬ Σ f ( x , y , z ) d S = ∬ D x y f [ x , y , z ( z , y ) ] 1 + z x 2 ( x , y ) + z y 2 ( x , y ) d x d y \displaystyle\iint_\Sigma f(x,y,z)dS=\iint_{D_{xy}}f[x,y,z(z,y)]\sqrt{1+z_x^2(x,y)+z^2_y(x,y)}dxdy Σf(x,y,z)dS=Dxyf[x,y,z(z,y)]1+zx2(x,y)+zy2(x,y) dxdy

5、对坐标的曲面积分

对于曲面 z = z ( x , y ) z=z(x,y) z=z(x,y),如果取它的法向量 n → \overrightarrow{n} n 的指向朝上,我们就认为取定曲面的上侧;对于闭曲面如果取它的法向量的指向朝外,我们就认为取定曲面的外侧。这种取定了法向量亦即选定了侧的曲面,就称为有向曲面

定义

∬ Σ P ( x , y , z ) d y d z + Q ( x , y , z ) d z d x + R ( x , y , z ) d x d y \displaystyle\iint_\Sigma P(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy ΣP(x,y,z)dydz+Q(x,y,z)dzdx+R(x,y,z)dxdy称为第二类曲面积分
计算曲面积分 ∬ Σ R ( x , y , z ) d x d y \displaystyle\iint_\Sigma R(x,y,z)dxdy ΣR(x,y,z)dxdy,只需将其中变量 z z z换为表示 Σ \Sigma Σ的函数 z ( z , y ) z(z,y) z(z,y),然后在 Σ \Sigma Σ的投影区域 D x y D_{xy} Dxy上计算二重积分即可
∬ Σ R ( x , y , z ) d x d y = ± ∬ D x y R [ x , y , z ( x , y ) ] d x d y \displaystyle\iint_\Sigma R(x,y,z)dxdy=\pm\iint_{D_{xy}} R[x,y,z(x,y)]dxdy ΣR(x,y,z)dxdy=±DxyR[x,y,z(x,y)]dxdy

两类曲面积分之间的联系

设有向曲面 Σ \Sigma Σ的法向量的方向余弦为 cos ⁡ α = − z x 1 + z x 2 + z y 2 , cos ⁡ β = − z y 1 + z x 2 + z y 2 , cos ⁡ γ = 1 1 + z x 2 + z y 2 \cos\alpha=\displaystyle\frac{-z_x}{\sqrt{1+z_x^2+z^2_y}},\cos\beta=\frac{-z_y}{\sqrt{1+z_x^2+z_y^2}},\cos\gamma=\frac{1}{\sqrt{1+z_x^2+z_y^2}} cosα=1+zx2+zy2 zx,cosβ=1+zx2+zy2 zy,cosγ=1+zx2+zy2 1
∬ Σ P d y d z + Q d z d x + R d x d y = ∬ Σ ( P cos ⁡ α + Q cos ⁡ β + R cos ⁡ γ ) d S \displaystyle\iint_\Sigma Pdydz+Qdzdx+Rdxdy=\iint_\Sigma(P\cos\alpha+Q\cos\beta+R\cos\gamma)dS ΣPdydz+Qdzdx+Rdxdy=Σ(Pcosα+Qcosβ+Rcosγ)dS
∬ Σ A → ⋅ d S → = ∬ Σ A → ⋅ n → d S \displaystyle\iint_\Sigma \overrightarrow{A}\cdot d\overrightarrow{S}=\iint_\Sigma \overrightarrow{A}\cdot\overrightarrow{n}dS ΣA dS =ΣA n dS
其中 n → = ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) , d S → = ( d y d z , d z d x , d x d y ) \overrightarrow{n}=(\cos\alpha,\cos\beta,\cos\gamma),d\overrightarrow{S}=(dydz,dzdx,dxdy) n =(cosα,cosβ,cosγ),dS =(dydz,dzdx,dxdy)称为有向曲面元

6、高斯公式

定理

设空间闭区域 Ω \Omega Ω是由分片光滑的闭曲面 Σ \Sigma Σ所围成,则 ∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v = ∯ Σ P d y d z + Q d z d x + R d x d y \displaystyle\iiint_\Omega (\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z})dv=\oiint_\Sigma Pdydz+Qdzdx+Rdxdy Ω(xP+yQ+zR)dv= ΣPdydz+Qdzdx+Rdxdy
这里 Σ \Sigma Σ Ω \Omega Ω的整个边界曲面的外侧

沿任意闭曲面的曲面积分为零的条件
定理

曲面积分 ∬ Σ P d y d z + Q d z d x + R d x d y \displaystyle\iint_\Sigma Pdydz+Qdzdx+Rdxdy ΣPdydz+Qdzdx+Rdxdy G G G内与所取曲面 Σ \Sigma Σ无关而只取决于 Σ \Sigma Σ的边界曲线的充分必要条件是 ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = 0 \displaystyle\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=0 xP+yQ+zR=0 G G G内恒成立

通量与散度

设有向量场 A → ( x , y , z ) = P ( x , y , z ) i → + Q ( x , y , z ) j → + R ( x , y , z ) k → , n → \overrightarrow{A}(x,y,z)=P(x,y,z)\overrightarrow{i}+Q(x,y,z)\overrightarrow{j}+R(x,y,z)\overrightarrow{k},\overrightarrow{n} A (x,y,z)=P(x,y,z)i +Q(x,y,z)j +R(x,y,z)k ,n Σ \Sigma Σ在点 ( x , y , z ) (x,y,z) (x,y,z)处的单位法向量,则积分 ∬ Σ A → ⋅ n → d S \displaystyle\iint_\Sigma \overrightarrow{A}\cdot\overrightarrow{n}dS ΣA n dS称为向量场 A → \overrightarrow{A} A 通过曲面 Σ \Sigma Σ向着指定侧的通量(或流量)

散度

d i v A → = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z = ∇ ⋅ A → div \overrightarrow{A}=\displaystyle\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}=\nabla\cdot\overrightarrow{A} divA =xP+yQ+zR=A

7、斯托克斯公式

定理

Γ \varGamma Γ为分段光滑的空间有向闭曲线, Σ \Sigma Σ是以 Γ \varGamma Γ为边界的分片光滑的有向曲面, Γ \varGamma Γ的正向与 Σ \Sigma Σ的侧符合右手规则,则 ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∮ Γ P d x + Q d y + R d z \displaystyle\iint_\Sigma\begin{vmatrix} dydz&dzdx&dxdy\\ \\ \displaystyle\frac{\partial}{\partial x}&\displaystyle\frac{\partial}{\partial y}&\displaystyle\frac{\partial}{\partial z}\\ \\ P&Q&R \end{vmatrix}=\oint_\varGamma Pdx+Qdy+Rdz ΣdydzxPdzdxyQdxdyzR=ΓPdx+Qdy+Rdz

空间曲线积分与路径无关的条件

空间曲线积分 ∫ Γ P d x + Q d y + R d z \displaystyle\int_\varGamma Pdx+Qdy+Rdz ΓPdx+Qdy+Rdz G G G内与路径无关的充分必要条件是 ∂ P ∂ y = ∂ Q ∂ x , ∂ Q ∂ z = ∂ R ∂ y , ∂ R ∂ x = ∂ P ∂ z \displaystyle\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x},\frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y},\frac{\partial R}{\partial x}=\frac{\partial P}{\partial z} yP=xQ,zQ=yR,xR=zP G G G内恒成立

环流量

设向量场 A → ( x , y , z ) = P ( x , y , z ) i → + Q ( x , y , z ) j → + R ( x , y , z ) k → \overrightarrow{A}(x,y,z)=P(x,y,z)\overrightarrow{i}+Q(x,y,z)\overrightarrow{j}+R(x,y,z)\overrightarrow{k} A (x,y,z)=P(x,y,z)i +Q(x,y,z)j +R(x,y,z)k Γ \varGamma Γ A ⇒ \Overrightarrow{A} A 的定义域内的一条分段光滑的有向闭曲线, τ → \overrightarrow{\tau} τ Γ \varGamma Γ在点 ( x , y , z ) (x,y,z) (x,y,z)处的单位切向量,则积分 ∮ Γ A → ⋅ τ → d s \displaystyle\oint_\varGamma\overrightarrow{A}\cdot\overrightarrow{\tau} ds ΓA τ ds称为向量场 A → \overrightarrow{A} A 沿有向闭曲线 Γ \varGamma Γ环流量

旋度

r o t A → = ( ∂ R ∂ y − ∂ Q ∂ z ) i → + ( ∂ P ∂ z − ∂ R ∂ x ) j → + ( ∂ Q ∂ x − ∂ P ∂ y ) k → = ∇ × A → = ∣ i → j → k → ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \bold{rot}\overrightarrow{A}=(\displaystyle\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})\overrightarrow{i}+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})\overrightarrow{j}+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})\overrightarrow{k}=\nabla\times\overrightarrow{A}=\begin{vmatrix} \overrightarrow{i}&\overrightarrow{j}&\overrightarrow{k}\\ \\ \displaystyle\frac{\partial}{\partial x}&\displaystyle\frac{\partial}{\partial y}&\displaystyle\frac{\partial}{\partial z}\\ \\ P&Q&R \end{vmatrix} rotA =(yRzQ)i +(zPxR)j +(xQyP)k =×A =i xPj yQk zR

十二、无穷级数

1、常数项级数

一般的,如果给定一个数列
u 1 , u 2 , . . . , u n , . . . u_1,u_2,...,u_n,... u1,u2,...,un,...
则由则数列构成的表达式
u 1 + u 2 + . . . + u n + . . . u_1+u_2+...+u_n+... u1+u2+...+un+...
叫做无穷级数,记为 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un,其中第 n n n u n u_n un叫做级数的一般项

作级数的前 n n n项的和 s n = u 1 + u 2 + . . . + u n = ∑ i = 1 n u i s_n=u_1+u_2+...+u_n=\displaystyle\sum^n_{i=1}u_i sn=u1+u2+...+un=i=1nui
s n s_n sn称为级数的部分和

定义

如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un的部分和数列 { s n } \{s_n\} {sn}有极限 s s s,即
lim ⁡ n → ∞ s n = s \displaystyle\lim_{n\rightarrow \infty}s_n=s nlimsn=s
则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛,这时极限 s s s叫做这级数的和,并写成
s = u 1 + u 2 + . . . + u n + . . . s=u_1+u_2+...+u_n+... s=u1+u2+...+un+...如果 { s n } \{s_n\} {sn}没有极限,则称无穷级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un发散
当级数收敛时,其部分和 s n s_n sn是级数的和 s s s的近似值,它们之间的差值
r n = s − s n = u n + 1 + u n + 2 + . . . r_n=s-s_n=u_{n+1}+u_{n+2}+... rn=ssn=un+1+un+2+...
叫做级数的余项,用近似值 s n s_n sn代替和 s s s所产生的误差是这个余项的绝对值,即误差是 ∣ r n ∣ |r_n| rn

几何级数

∑ n = 0 ∞ a q n = a + a q + a q 2 + . . . + a q n + . . . \displaystyle\sum^\infty_{n=0}aq^n=a+aq+aq^2+...+aq_n+... n=0aqn=a+aq+aq2+...+aqn+...

收敛级数的基本性质
  1. 如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛于和 s s s,则级数 ∑ n = 1 ∞ k u n \displaystyle\sum^\infty_{n=1}ku_n n=1kun也收敛,且其和为 k s ks ks
  2. 如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn分别收敛于和 s s s σ \sigma σ,则级数 ∑ n = 1 ∞ ( u n ± v n ) \displaystyle\sum^\infty_{n=1}(u_n\pm v_n) n=1(un±vn)也收敛,且其和为 s ± σ s\pm \sigma s±σ
  3. 在级数中去掉、加上或改变有限项,不会改变级数的收敛性
  4. 如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛,则对这级数的项任意加括号后所形成的级数
    ( u 1 + . . . + u n 1 ) + ( u n 1 + 1 + . . . + u n 2 ) + . . . + ( u n k − 1 + 1 + . . . + u n k ) + . . . (u_1+...+u_{n_1})+(u_{n_1+1}+...+u_{n_2})+...+(u_{n_{k-1}+1}+...+u_{n_k})+... (u1+...+un1)+(un1+1+...+un2)+...+(unk1+1+...+unk)+...
    仍收敛,且其和不变
  5. (级数收敛的必要条件)如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛,则它的一般项 u n u_n un趋于0,即 lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n\rightarrow\infty}u_n=0 nlimun=0
调和级数

1 + 1 2 + 1 3 + . . . + 1 n + . . . 1+\displaystyle\frac{1}{2}+\displaystyle\frac{1}{3}+...+\displaystyle\frac{1}{n}+... 1+21+31+...+n1+...

柯西审敛原理

级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛的充分必要条件为:对于任意给定的正数 ϵ \epsilon ϵ,总存在正整数 N N N,使得当 n > N n>N n>N时,对于任意的正整数 p p p,都有 ∣ u n + 1 + u n + 2 + . . . + u n + p ∣ < ϵ |u_{n+1}+u_{n+2}+...+u_{n+p}|<\epsilon un+1+un+2+...+un+p<ϵ成立

2、常数项级数的审敛法

正项级数及其审敛法
比较审敛法

∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn都是正项级数,且 u n ≤ v n ( n = 1 , 2 , . . . ) u_n\leq v_n(n=1,2,...) unvn(n=1,2,...)。若级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn收敛,则级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛;反之,若级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un发散,则级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn发散

比较审敛法的极限形式

∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn都是正项级数,

  1. 如果 lim ⁡ n → ∞ u n v n = l ( 0 ≤ l < + ∞ ) \displaystyle\lim_{n\rightarrow\infty}\frac{u_n}{v_n}=l (0\leq l<+\infty) nlimvnun=l(0l<+),且级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn收敛,则级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛;
  2. 如果 lim ⁡ n → ∞ u n v n = l > 0 \displaystyle\lim_{n\rightarrow\infty}\frac{u_n}{v_n}=l >0 nlimvnun=l>0 lim ⁡ n → ∞ u n v n = + ∞ \displaystyle\lim_{n\rightarrow\infty}\frac{u_n}{v_n}=+\infty nlimvnun=+,且级数 ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn发散,则级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un发散
比值审敛法

∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un为正项级数,如果 lim ⁡ n → ∞ u n + 1 u n = ρ \displaystyle\lim_{n\rightarrow\infty}\frac{u_{n+1}}{u_n}=\rho nlimunun+1=ρ则当 ρ < 1 \rho<1 ρ<1时级数收敛; ρ > 1 \rho>1 ρ>1 ∞ \infty 时级数发散; ρ = 1 \rho=1 ρ=1时级数可能收敛也可能发散

根值审敛法

∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un为正项级数,如果 lim ⁡ n → ∞ u n n = ρ \displaystyle\lim_{n\rightarrow\infty}\sqrt[n]{u_n}=\rho nlimnun =ρ,则当 ρ < 1 \rho<1 ρ<1时级数收敛, ρ > 1 \rho>1 ρ>1 + ∞ +\infty +时级数发散, ρ = 1 \rho=1 ρ=1时级数可能收敛也可能发散

交错级数及其审敛法

莱布尼茨定理

如果交错级数 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \displaystyle\sum^\infty_{n=1}(-1)^{n-1}u_n n=1(1)n1un满足条件

  1. u n ≥ u n + 1 ( n = 1 , 2 , 3 , . . . ) u_n\geq u_{n+1}\quad(n=1,2,3,...) unun+1(n=1,2,3,...)
  2. lim ⁡ n → ∞ u n = 0 \displaystyle\lim_{n\rightarrow\infty}u_n=0 nlimun=0
    则级数收敛,且其和 s ≤ u 1 s\leq u_1 su1,其余项 r n r_n rn的绝对值 ∣ r n ∣ ≤ u n + 1 |r_n|\leq u_{n+1} rnun+1
绝对收敛与条件收敛
定义

如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un各项的绝对值所构成的正项级数 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum^\infty_{n=1}|u_n| n=1un收敛,则称级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un绝对收敛;如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un收敛,而级数 ∑ n = 1 ∞ ∣ u n ∣ \displaystyle\sum^\infty_{n=1}|u_n| n=1un发散,则称级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un条件收敛

定理

如果级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un绝对收敛,则级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un必定收敛

绝对收敛级数的性质

定理

绝对收敛级数经改变项的位置后构成的级数也收敛,且与原级数有相同的和(即绝对收敛级数具有可交换性)

柯西乘积

u 1 v 1 + ( u 1 v 2 + u 2 v 1 ) + . . . + ( u 1 v n + u 2 v n − 1 + . . . + u n v 1 ) + . . . u_1v_1+(u_1v_2+u_2v_1)+...+(u_1v_n+u_2v_{n-1}+...+u_nv_1)+... u1v1+(u1v2+u2v1)+...+(u1vn+u2vn1+...+unv1)+...为两级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn柯西乘积

定理

设级数 ∑ n = 1 ∞ u n \displaystyle\sum^\infty_{n=1}u_n n=1un ∑ n = 1 ∞ v n \displaystyle\sum^\infty_{n=1}v_n n=1vn都绝对收敛,其和分别为 s s s σ \sigma σ,则它们的柯西乘积 u 1 v 1 + ( u 1 v 2 + u 2 v 1 ) + . . . + ( u 1 v n + u 2 v n − 1 + . . . + u n v 1 ) + . . . u_1v_1+(u_1v_2+u_2v_1)+...+(u_1v_n+u_2v_{n-1}+...+u_nv_1)+... u1v1+(u1v2+u2v1)+...+(u1vn+u2vn1+...+unv1)+...也是绝对收敛,且其和为 s ⋅ σ s\cdot \sigma sσ

3、幂级数

定义

如果给定一个定义在区间 I I I上的函数列 u 1 ( x ) , u 2 ( x ) , u 3 ( x ) , . . . , u n ( x ) , . . . u_1(x),u_2(x),u_3(x),...,u_n(x),... u1(x),u2(x),u3(x),...,un(x),...,则由这函数列构成的表达式 u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + . . . + u n ( x ) + . . . u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+... u1(x)+u2(x)+u3(x)+...+un(x)+...称为定义在区间 I I I上的函数项无穷级数

  • 对于每一个确定的值 x 0 ∈ I x_0\in I x0I,函数项级数成为常数项级数 u 1 ( x 0 ) + u 2 ( x 0 ) + u 3 ( x 0 ) + . . . + u n ( x 0 ) + . . . u_1(x_0)+u_2(x_0)+u_3(x_0)+...+u_n(x_0)+... u1(x0)+u2(x0)+u3(x0)+...+un(x0)+...这个级数可能收敛也可能发散。如果级数收敛,称点 x 0 x_0 x0是函数项级数的收敛点;如果级数发散,称点 x 0 x_0 x0是函数项级数的发散点。函数项级数的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域
  • 在收敛域上,函数项级数的和是 x x x的函数 s ( x ) s(x) s(x),通常称 s ( x ) s(x) s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成 s ( x ) = u 1 ( x ) + u 2 ( x ) + u 3 ( x ) + . . . + u n ( x ) + . . . s(x)=u_1(x)+u_2(x)+u_3(x)+...+u_n(x)+... s(x)=u1(x)+u2(x)+u3(x)+...+un(x)+...把函数项级数的前 n n n项的部分和记作 s n ( x ) s_n(x) sn(x),则在收敛域上有 lim ⁡ n → ∞ = s ( x ) \displaystyle\lim_{n\rightarrow\infty}=s(x) nlim=s(x),记 r n ( x ) = s ( x ) − s n ( x ) , r n ( x ) r_n(x)=s(x)-s_n(x),r_n(x) rn(x)=s(x)sn(x),rn(x)叫做函数项级数的余项,并有 lim ⁡ n → ∞ r n ( x ) = 0 \displaystyle\lim_{n\rightarrow\infty}r_n(x)=0 nlimrn(x)=0
幂函数及其收敛性

幂级数 ∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \displaystyle\sum^\infty_{n=0}a_nx^n=a_0+a_1x+a_2x^2+...+a_nx^n+... n=0anxn=a0+a1x+a2x2+...+anxn+...其中常数 a 0 , a 1 , a 2 , . . . , a n , . . . a_0,a_1,a_2,...,a_n,... a0,a1,a2,...,an,...叫做幂级数的系数

阿贝尔定理

如果级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn x = x 0 ( x 0 ≠ 0 ) x=x_0(x_0\neq 0) x=x0(x0=0)时收敛,则适合不等式 ∣ x ∣ < ∣ x 0 ∣ |x|<|x_0| x<x0的一切 x x x使这幂级数绝对收敛。反之,如果级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn x = x 0 x=x_0 x=x0时发散,则适合不等式 ∣ x ∣ > ∣ x 0 ∣ |x|>|x_0| x>x0的一切 x x x使这幂级数发散。

如果幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn不是仅在 x = 0 x=0 x=0一点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数 R R R存在,使得

  1. ∣ x ∣ < R |x|<R x<R时,幂级数绝对收敛
  2. ∣ x ∣ > R |x|>R x>R时,幂级数发散
  3. x = R x=R x=R x = − R x=-R x=R时,幂级数可能收敛也可能发散
    正数 R R R通常叫做幂级数的收敛半径。开区间 ( − R , R ) (-R,R) (R,R)叫做幂级数的收敛区间
定理

如果 lim ⁡ n → ∞ ∣ a n + 1 a n ∣ = ρ \displaystyle\lim_{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|=\rho nlimanan+1=ρ其中 a n a_n an a n + 1 a_{n+1} an+1是幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn的相邻两项的系数,则这幂级数的收敛半径 R = { 1 ρ , ρ ≠ 0 + ∞ , ρ = 0 0 , ρ = + ∞ R= \begin{cases} \displaystyle\frac{1}{\rho},\qquad\quad \rho\neq 0\\ +\infty, \qquad \rho=0\\ 0, \qquad\quad \rho=+\infty \end{cases} R=ρ1,ρ=0+,ρ=00,ρ=+

幂级数的运算

设幂级数 a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . a_0+a_1x+a_2x^2+...+a_nx^n+... a0+a1x+a2x2+...+anxn+... b 0 + b 1 x + b 2 x 2 + . . . + b n x n + . . . b_0+b_1x+b_2x^2+...+b_nx^n+... b0+b1x+b2x2+...+bnxn+...分别在区间 ( − R , R ) (-R,R) (R,R) ( R ′ , R ′ ) (R^\prime,R^\prime) (R,R)内收敛,对于这两个幂级数,可以进行下列四则运算:

  1. 加法
    ( a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . ) + ( b 0 + b 1 x + b 2 x 2 + . . . + b n x n + . . . ) = ( a 0 + b 0 ) + ( a 1 + b 1 ) x + ( a 2 + b 2 ) x 2 + . . . + ( a n + b n ) x n + . . . (a_0+a_1x+a_2x^2+...+a_nx^n+...)+(b_0+b_1x+b_2x^2+...+b_nx^n+...)=(a_0+b_0)+(a_1+b_1)x+(a_2+b_2)x^2+...+(a_n+b_n)x^n+... (a0+a1x+a2x2+...+anxn+...)+(b0+b1x+b2x2+...+bnxn+...)=(a0+b0)+(a1+b1)x+(a2+b2)x2+...+(an+bn)xn+...
  2. 减法
    ( a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . ) − ( b 0 + b 1 x + b 2 x 2 + . . . + b n x n + . . . ) = ( a 0 − b 0 ) + ( a 1 − b 1 ) x + ( a 2 − b 2 ) x 2 + . . . + ( a n − b n ) x n + . . . (a_0+a_1x+a_2x^2+...+a_nx^n+...)-(b_0+b_1x+b_2x^2+...+b_nx^n+...)=(a_0-b_0)+(a_1-b_1)x+(a_2-b_2)x^2+...+(a_n-b_n)x^n+... (a0+a1x+a2x2+...+anxn+...)(b0+b1x+b2x2+...+bnxn+...)=(a0b0)+(a1b1)x+(a2b2)x2+...+(anbn)xn+...
  3. 乘法
    ( a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . ) ⋅ ( b 0 + b 1 x + b 2 x 2 + . . . + b n x n + . . . ) = a 0 b 0 + ( a 0 b 1 + a 1 b 0 ) x + ( a 0 b 2 + a 1 b 1 + a 2 b 0 ) x 2 + . . . + ( a 0 b n + a 1 b n − 1 + . . . + a n b 0 ) x n + . . . (a_0+a_1x+a_2x^2+...+a_nx^n+...)\cdot(b_0+b_1x+b_2x^2+...+b_nx^n+...)=a_0b_0+(a_0b_1+a_1b_0)x+(a_0b_2+a_1b_1+a_2b_0)x^2+...+(a_0b_n+a_1b_{n-1}+...+a_nb_0)x^n+... (a0+a1x+a2x2+...+anxn+...)(b0+b1x+b2x2+...+bnxn+...)=a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x2+...+(a0bn+a1bn1+...+anb0)xn+...
    上面三式在 ( − R , R ) (-R,R) (R,R) ( − R ′ , R ′ ) (-R^\prime,R^\prime) (R,R)中较小的区间内成立
  4. 除法
    a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . b 0 + b 1 x + b 2 x 2 + . . . + b n x n + . . . = c 0 + c 1 x + c 2 x 2 + . . . + c n x n + . . . \displaystyle\frac{a_0+a_1x+a_2x^2+...+a_nx^n+...}{b_0+b_1x+b_2x^2+...+b_nx^n+...}=c_0+c_1x+c_2x^2+...+c_nx^n+... b0+b1x+b2x2+...+bnxn+...a0+a1x+a2x2+...+anxn+...=c0+c1x+c2x2+...+cnxn+...
    为了决定系数 c 0 , c 1 , c 2 , . . . , c n , . . . c_0,c_1,c_2,...,c_n,... c0,c1,c2,...,cn,...,可以将级数 ∑ n = 0 ∞ b n x n \displaystyle\sum^\infty_{n=0}b_nx^n n=0bnxn ∑ n = 0 ∞ c n x n \displaystyle\sum^\infty_{n=0}c_nx^n n=0cnxn相乘,并令乘积中各项的系数分别等于级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn中同次幂的系数,即得
    a 0 = b 0 c 0 a_0=b_0c_0 a0=b0c0
    a 1 = b 1 c 0 + b 0 c 1 a_1=b_1c_0+b_0c_1 a1=b1c0+b0c1
    a 2 = b 2 c 0 + b 1 c 1 + b 0 c 2 a_2=b_2c_0+b_1c_1+b_0c_2 a2=b2c0+b1c1+b0c2
    . . . . . . . . . . . . ............ ............
    由这些方程可以顺序求出 c 0 , c 1 , c 2 , . . . , c n , . . . c_0,c_1,c_2,...,c_n,... c0,c1,c2,...,cn,...
    相除后所得的幂级数 ∑ n = 0 ∞ c n x n \displaystyle\sum^\infty_{n=0}c_nx^n n=0cnxn的收敛区间可能比原来两级数的收敛区间小得多
幂级数的和函数的性质
  1. 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn的和函数 s ( x ) s(x) s(x)在其收敛域 I I I上连续
  2. 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn的和函数 s ( x ) s(x) s(x)在其收敛域 I I I上可积,并有逐项积分公式 ∫ 0 x s ( x ) d x = ∫ 0 x [ ∑ n = 1 ∞ a n x n ] d x = ∑ n = 0 ∞ ∫ 0 x a n x n d x = ∑ n = 0 ∞ a n n + 1 x n + 1 ( x ∈ I ) \displaystyle\int^x_0s(x)dx=\int^x_0[\sum^\infty_{n=1}a_nx^n]dx=\sum^\infty_{n=0}\int^x_0a_nx^ndx=\sum^\infty_{n=0}\frac{a_n}{n+1}x^{n+1}(x\in I) 0xs(x)dx=0x[n=1anxn]dx=n=00xanxndx=n=0n+1anxn+1(xI)逐项积分后所得到的幂级数和原级数有相同的收敛半径
  3. 幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum^\infty_{n=0}a_nx^n n=0anxn的和函数 s ( x ) s(x) s(x)在其收敛区间 ( − R , R ) (-R,R) (R,R)内可导,且有逐项求导公式 s ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 ( ∣ x ∣ < R ) s^\prime(x)=(\displaystyle\sum^\infty_{n=0}a_nx^n)^\prime=\sum^\infty_{n=0}(a_nx^n)^\prime=\sum^\infty_{n=1}na_nx^{n-1}(|x|<R) s(x)=(n=0anxn)=n=0(anxn)=n=1nanxn1(x<R)逐项求导后所得到的幂级数和原级数有相同的收敛半径

4、函数展开成幂级数

如果函数 f ( x ) f(x) f(x)有幂级数展开式,那么该幂级数必为 f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + . . . = ∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n ( 1 ) f(x_0)+f^\prime(x_0)(x-x_0)+...+\displaystyle\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+...=\sum^\infty_{n=0}\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n\quad(1) f(x0)+f(x0)(xx0)+...+n!1f(n)(x0)(xx0)n+...=n=0n!1f(n)(x0)(xx0)n(1)而展开式必为 f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n , x ∈ U ( x 0 ) ( 2 ) f(x)=\displaystyle\sum^\infty_{n=0}\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n,x\in U(x_0)\quad(2) f(x)=n=0n!1f(n)(x0)(xx0)n,xU(x0)(2)幂级数 ( 1 ) (1) (1)叫做函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的泰勒级数,展开式 ( 2 ) (2) (2)叫做函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的泰勒展开式

定理

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一领域 U ( x 0 ) U(x_0) U(x0)内具有各阶导数,则 f ( x ) f(x) f(x)在该领域内能展开成泰勒级数的充分必要条件是在该领域内 f ( x ) f(x) f(x)的泰勒公式中的余项 R n ( x ) R_n(x) Rn(x) n → ∞ n\rightarrow\infty n时的极限为零,即 lim ⁡ n → ∞ R n ( x ) = 0 , x ∈ U ( x 0 ) \displaystyle\lim_{n\rightarrow\infty}R_n(x)=0,x\in U(x_0) nlimRn(x)=0,xU(x0)

x 0 = 0 x_0=0 x0=0时, f ( x ) = ∑ n = 0 ∞ 1 n ! f ( n ) ( 0 ) x n ( ∣ x ∣ < r ) f(x)=\displaystyle\sum^\infty_{n=0}\frac{1}{n!}f^{(n)}(0)x^n\quad(|x|<r) f(x)=n=0n!1f(n)(0)xn(x<r)该级数称为函数 f ( x ) f(x) f(x)麦克劳林级数

常用展开式
  • e x = ∑ n = 0 ∞ 1 n ! x n , ( − ∞ < x < + ∞ ) e^x=\displaystyle\sum^\infty_{n=0}\frac{1}{n!}x^n,\qquad (-\infty<x<+\infty) ex=n=0n!1xn,(<x<+)
  • sin ⁡ x = ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! x 2 k + 1 , ( − ∞ < x < + ∞ ) \sin x=\displaystyle\sum^\infty_{k=0}\frac{(-1)^k}{(2k+1)!}x^{2k+1},\qquad (-\infty<x<+\infty) sinx=k=0(2k+1)!(1)kx2k+1,(<x<+)
  • 1 1 + x = ∑ n = 0 ∞ ( − 1 ) n x n ( − 1 < x < 1 ) \displaystyle\frac{1}{1+x}=\sum^\infty_{n=0}(-1)^nx^n\qquad (-1<x<1) 1+x1=n=0(1)nxn(1<x<1)
  • ( 1 + x ) m = 1 + m x + m ( m − 1 ) 2 ! x 2 + . . . + m ( m − 1 ) . . . ( m − n + 1 ) n ! x n + . . . ( − 1 < x < 1 ) (1+x)^m=1+mx+\displaystyle\frac{m(m-1)}{2!}x^2+...+\frac{m(m-1)...(m-n+1)}{n!}x^n+...\qquad (-1<x<1) (1+x)m=1+mx+2!m(m1)x2+...+n!m(m1)...(mn+1)xn+...(1<x<1)
  • l n ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n ln(1+x)=x-\displaystyle \frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\cdots +(-1)^{n-1}\frac{x^n}{n} ln(1+x)=x2x2+3x34x4++(1)n1nxn
  • c o s x = 1 − x 2 2 ! + x 4 4 ! + . . . + ( − 1 ) n x 2 n ( 2 n ) ! cosx=1-\displaystyle\frac{x^2}{2!}+\frac{x^4}{4!}+...+\frac{(-1)^nx^{2n}}{(2n)!} cosx=12x2+4x4+...+(2n)!(1)nx2n
  • a r c t a n x = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 arctanx=\displaystyle\sum_{n=0}^{\infin}(-1)^n\frac{x^{2n+1}}{2n+1} arctanx=n=0(1)n2n+1x2n+1

5、函数幂级数展开式的应用

近似计算

微分方程的幂级数解法

关于二阶齐次线性方程 y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 y^{\prime\prime}+P(x)y^\prime+Q(x)y=0 y+P(x)y+Q(x)y=0:

定理

如果方程中的系数 P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x)可在 − R < x < R -R<x<R R<x<R内展开为 x x x的幂级数,那么在 − R < x < R -R<x<R R<x<R内方程必有形如 y = ∑ n = 0 ∞ a n x n y=\displaystyle\sum^\infty_{n=0}a_nx^n y=n=0anxn的解

欧拉公式

(此处略,只留下公式)
e i x cos ⁡ x + i sin ⁡ x e^{ix}\cos x+i\sin x eixcosx+isinx
cos ⁡ x = e i x + e − i x 2 \cos x=\displaystyle\frac{e^{ix}+e^{-ix}}{2} cosx=2eix+eix
sin ⁡ x = e i x − e − i x 2 i \sin x=\displaystyle\frac{e^{ix}-e^{-ix}}{2i} sinx=2ieixeix

6、函数项级数的一致收敛性

定义

设有函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)。如果对于任意给定的正数 ϵ \epsilon ϵ,都存在着一个只依赖于 ϵ \epsilon ϵ的正整数 N N N,使得当 n > N n>N n>N时,对区间 I I I上的一切,都有不等式 ∣ r n ( x ) ∣ = ∣ s ( x ) − s n ( x ) ∣ < ϵ |r_n(x)|=|s(x)-s_n(x)|<\epsilon rn(x)=s(x)sn(x)<ϵ成立,则称函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)在区间 I I I一致收敛于和 s ( x ) s(x) s(x)

定理(魏尔斯特拉斯判别法)

如果函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)在区间 I I I上满足条件:

  1. ∣ u n ( x ) ∣ ⩽ a n ( n = 1 , 2 , 3 , . . . ) |u_n(x)|\leqslant a_n\quad(n=1,2,3,...) un(x)an(n=1,2,3,...)
  2. 正项级数 ∑ n = 1 ∞ a n ( x ) \displaystyle\sum^\infty_{n=1}a_n(x) n=1an(x)收敛

则函数项级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)收敛

性质
  1. 如果级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)的各项 u n ( x ) u_n(x) un(x)在区间 [ a , b ] [a,b] [a,b]上都连续,且 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)在区间 [ a , b ] [a,b] [a,b]上一致收敛于 s ( x ) s(x) s(x),则 s ( x ) s(x) s(x) [ a , b ] [a,b] [a,b]上也连续。
  2. 如果级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)的各项 u n ( x ) u_n(x) un(x)在区间 [ a , b ] [a,b] [a,b]上连续,且 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)在区间 [ a , b ] [a,b] [a,b]上一致收敛于 s ( x ) s(x) s(x),则级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x) [ a , b ] [a,b] [a,b]上可以逐项积分,即 ∫ x 0 x s ( x ) d x = ∫ x 0 x u 1 ( x ) d x + ∫ x 0 x u 2 ( x ) d x + . . . + ∫ x 0 x u n ( x ) d x + . . . \displaystyle\int^x_{x_0}s(x)dx=\int^x_{x_0}u_1(x)dx+\int^x_{x_0}u_2(x)dx+...+\int^x_{x_0}u_n(x)dx+... x0xs(x)dx=x0xu1(x)dx+x0xu2(x)dx+...+x0xun(x)dx+...其中 a ⩽ x 0 < x ⩽ b a\leqslant x_0<x\leqslant b ax0<xb,并且上式右端的级数在 [ a , b ] [a,b] [a,b]上也一致收敛。
  3. 如果级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x)在区间 [ a , b ] [a,b] [a,b]上收敛于和 s ( x ) s(x) s(x),它的各项 u n ( x ) u_n(x) un(x)都具有连续导数 u n ′ ( x ) u^\prime_n(x) un(x),并且级数 ∑ n = 1 ∞ u n ′ ( x ) \displaystyle\sum^\infty_{n=1}u_n^\prime(x) n=1un(x) [ a , b ] [a,b] [a,b]上一致收敛,则级数 ∑ n = 1 ∞ u n ( x ) \displaystyle\sum^\infty_{n=1}u_n(x) n=1un(x) [ a , b ] [a,b] [a,b]上也一致收敛,且可逐项求导,即 s ′ ( x ) = u 1 ′ ( x ) + u 2 ′ ( x ) + . . . + u n ′ ( x ) + . . . s^\prime(x)=u_1^\prime(x)+u_2^\prime(x)+...+u_n^\prime(x)+... s(x)=u1(x)+u2(x)+...+un(x)+...
  4. 如果幂级数 ∑ n = 1 ∞ a n ( x ) \displaystyle\sum^\infty_{n=1}a_n(x) n=1an(x)的收敛半径 R > 0 R>0 R>0,则此级数在 ( − R , R ) (-R,R) (R,R)内的任一闭区间 [ a , b ] [a,b] [a,b]上一致收敛。
  5. 如果幂级数 ∑ n = 1 ∞ a n ( x ) \displaystyle\sum^\infty_{n=1}a_n(x) n=1an(x)的收敛半径为 R > 0 R>0 R>0,则其和函数 s ( x ) s(x) s(x) ( − R , R ) (-R,R) (R,R)内可导,且有逐项求导公式 s ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 s^\prime(x)=\displaystyle(\sum^\infty_{n=0}a_nx^n)^\prime=\sum^\infty_{n=1}na_nx^{n-1} s(x)=(n=0anxn)=n=1nanxn1
    逐项求导后所得到的幂级数与原级数有相同的收敛半径。

7、傅里叶级数

三角级数

a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π t l + b n sin ⁡ n π t l ) \displaystyle\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\cos\frac{n\pi t}{l}+b_n\sin\frac{n\pi t}{l}) 2a0+n=1(ancoslnπt+bnsinlnπt)
π t l = x \displaystyle\frac{\pi t}{l}=x lπt=x,则变为 a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) \displaystyle\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\cos nx+b_n\sin nx) 2a0+n=1(ancosnx+bnsinnx)
三角函数系 1 , cos ⁡ x , sin ⁡ x , cos ⁡ 2 x , sin ⁡ 2 x , . . . , cos ⁡ n x , sin ⁡ n x 1,\cos x,\sin x,\cos 2x,\sin 2x,...,\cos nx,\sin nx 1,cosx,sinx,cos2x,sin2x,...,cosnx,sinnx在区间 [ − π , π ] [-\pi,\pi] [π,π]正交,就是指在三角函数系中任何不同的两个函数的乘积在区间 [ − π , π ] [-\pi,\pi] [π,π]上的积分等于零

函数展开成傅里叶级数

f ( x ) f(x) f(x)是周期为 2 π 2\pi 2π的周期函数,且能展开成三角级数 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n x + b n sin ⁡ n x ) f(x)=\displaystyle\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\cos nx+b_n\sin nx) f(x)=2a0+n=1(ancosnx+bnsinnx)
{ a n = 1 π ∫ − π π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , 3 , . . . ) b n = 1 π ∫ − π π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , 3 , . . . ) \begin{cases} a_n=\displaystyle\frac{1}{\pi}\int^\pi_{-\pi}f(x)\cos nxdx\quad(n=0,1,2,3,...)\\ b_n=\displaystyle\frac{1}{\pi}\int^\pi_{-\pi}f(x)\sin nxdx\quad(n=1,2,3,...) \end{cases} an=π1ππf(x)cosnxdx(n=0,1,2,3,...)bn=π1ππf(x)sinnxdx(n=1,2,3,...)
将系数代入 f ( x ) f(x) f(x)的表达式,所得的三角级数叫做函数 f ( x ) f(x) f(x)傅里叶级数

收敛定理,狄利克雷充分条件

f ( x ) f(x) f(x)是周期为 2 π 2\pi 2π的周期函数,如果它满足:

  1. 在一个周期内连续或只有有限个第一类间断点,
  2. 在一个周期内至多只有有限个极值点,

f ( x ) f(x) f(x)的傅里叶级数收敛,并且

  • x x x f ( x ) f(x) f(x)的连续点时,级数收敛于 f ( x ) f(x) f(x);
  • x x x f ( x ) f(x) f(x)的间断点时,级数收敛于 1 2 [ f ( x − ) + f ( x + ) ] \displaystyle\frac{1}{2}[f(x^-)+f(x^+)] 21[f(x)+f(x+)]

周期延拓

正弦级数和余弦级数
  • f ( x ) f(x) f(x)为奇函数时, f ( x ) cos ⁡ n x f(x)\cos nx f(x)cosnx是奇函数, f ( x ) sin ⁡ n x f(x)\sin nx f(x)sinnx是偶函数,故
    { a n = 0 ( n = 0 , 1 , 2 , . . . ) b n = 2 π ∫ 0 π f ( x ) sin ⁡ n x d x ( n = 1 , 2 , 3 , . . . ) \begin{cases} a_n=0\quad (n=0,1,2,...)\\ b_n=\displaystyle\frac{2}{\pi}\int^\pi_{0}f(x)\sin nxdx \quad(n=1,2,3,...) \end{cases} an=0(n=0,1,2,...)bn=π20πf(x)sinnxdx(n=1,2,3,...)
    即知奇函数的傅里叶级数是只含有正弦项的正弦级数 ∑ n = 1 ∞ b n sin ⁡ n x \displaystyle\sum^\infty_{n=1}b_n\sin nx n=1bnsinnx
  • f ( x ) f(x) f(x)为偶函数时, f ( x ) cos ⁡ n x f(x)\cos nx f(x)cosnx是偶函数, f ( x ) sin ⁡ n x f(x)\sin nx f(x)sinnx是奇函数,故
    { a n = 2 π ∫ 0 π f ( x ) cos ⁡ n x d x ( n = 0 , 1 , 2 , . . . ) b n = 0 ( n − 1 , 2 , 3 , . . . ) \begin{cases} a_n=\displaystyle\frac{2}{\pi}\int^\pi_0f(x)\cos nxdx\quad(n=0,1,2,...)\\ b_n=0\quad(n-1,2,3,...) \end{cases} an=π20πf(x)cosnxdx(n=0,1,2,...)bn=0(n1,2,3,...)
    即知偶函数的傅里叶级数是只含有常数项和余弦项的余弦级数

奇延拓、偶延拓

8、一般周期函数的傅里叶级数

周期为 2 l 2l 2l的周期函数的傅里叶级数

定理 设周期为 2 l 2l 2l的周期函数 f ( x ) f(x) f(x)满足收敛定理的条件,则它的傅里叶级数展开式为 f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n π x l d x + b n sin ⁡ n π x l ) ( x ∈ C ) f(x)=\displaystyle\frac{a_0}{2}+\sum^\infty_{n=1}(a_n\cos\frac{n\pi x}{l}dx+b_n\sin\frac{n\pi x}{l})(x\in C) f(x)=2a0+n=1(ancoslnπxdx+bnsinlnπx)(xC)
其中
{ a n = 1 l ∫ − l l f ( x ) cos ⁡ n π x l d x ( n = 0 , 1 , 2 , . . . ) b n = 1 l ∫ − l l f ( x ) sin ⁡ n π x l d x ( n = 1 , 2 , 3 , . . . ) \begin{cases} a_n=\displaystyle\frac{1}{l}\int^l_{-l}f(x)\cos\frac{n\pi x}{l}dx\quad(n=0,1,2,...)\\ b_n=\displaystyle\frac{1}{l}\int^l_{-l}f(x)\sin\frac{n\pi x}{l}dx\quad(n=1,2,3,...) \end{cases} an=l1llf(x)coslnπxdx(n=0,1,2,...)bn=l1llf(x)sinlnπxdx(n=1,2,3,...)
C = { x ∣ f ( x ) = 1 2 [ f ( x − ) + f ( x + ) ] } C=\{x|f(x)=\displaystyle\frac{1}{2}[f(x^-)+f(x^+)]\} C={xf(x)=21[f(x)+f(x+)]}

  • f ( x ) f(x) f(x)为奇函数时, f ( x ) = ∑ n = 1 ∞ b n sin ⁡ n π x l ( x ∈ C ) f(x)=\displaystyle\sum^\infty_{n=1}b_n\sin\frac{n\pi x}{l}(x\in C) f(x)=n=1bnsinlnπx(xC)
    其中 b n = 2 l ∫ 0 l f ( x ) sin ⁡ n π x l d x ( n − 1 , 2 , 3.... ) b_n=\displaystyle\frac{2}{l}\int^l_0f(x)\sin\frac{n\pi x}{l}dx\quad(n-1,2,3....) bn=l20lf(x)sinlnπxdx(n1,2,3....)
  • f ( x ) f(x) f(x)为偶函数时, f ( x ) = a 0 2 + ∑ n = 1 ∞ a n cos ⁡ n π x l ( x ∈ C ) f(x)=\displaystyle\frac{a_0}{2}+\sum^\infty_{n=1}a_n\cos\frac{n\pi x}{l}(x\in C) f(x)=2a0+n=1ancoslnπx(xC)
    其中 a n = 2 l ∫ 0 l f ( x ) cos ⁡ n π x l d x ( n − 0 , 1 , 2.... ) a_n=\displaystyle\frac{2}{l}\int^l_0f(x)\cos\frac{n\pi x}{l}dx\quad(n-0,1,2....) an=l20lf(x)coslnπxdx(n0,1,2....)
傅里叶级数的复数形式(略)

附录(常见的导数及积分)

导数
  • d d x ( s i n − 1 x ) = 1 1 − x 2 \displaystyle\frac{d}{dx}(sin^{-1}x)=\frac{1}{\sqrt{1-x^2}} dxd(sin1x)=1x2 1
  • d d x ( c o s − 1 x ) = − 1 1 − x 2 \displaystyle\frac{d}{dx}(cos^{-1}x)=-\frac{1}{\sqrt{1-x^2}} dxd(cos1x)=1x2 1
  • d d x ( t a n − 1 x ) = 1 1 + x 2 \displaystyle\frac{d}{dx}(tan^{-1}x)=\frac{1}{1+x^2} dxd(tan1x)=1+x21
积分
  • ∫ s e c   u d u = l n ∣ s e c   u + t a n   u ∣ + C \int sec\ udu=ln|sec\ u+tan\ u|+C sec udu=lnsec u+tan u+C
  • 3
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值