大物下学期期末复习笔记

Ch 21 Charge(电荷)

库伦定律(Coulomb’s Law)
F = 1 4 π ε 0 q 1 q 2 r 2 F = \frac{1}{4\pi \varepsilon_0}\frac{q_1q_2}{r^2} F=4πε01r2q1q2
重要参数:

  • k = 9.0 × 1 0 9 N . m 2 / C 2 \times10^9N.m^2/C^2 ×109N.m2/C2
  • ε 0 = 8.85 × 1 0 − 12 C 2 / N ⋅ m 2 \varepsilon_0 = 8.85\times 10^{-12}C^2/N\cdot m^2 ε0=8.85×1012C2/Nm2

电荷是量子化的, e = 1.602 × 1 0 − 19 C e = 1.602\times 10^{-19}C e=1.602×1019C

Ch 22 Electric Fields(电场)

电场的定义式:
E ⃗ = F ⃗ q 0 \vec{E} = \frac{\vec{F}}{q_0} E =q0F
点电荷形成的电场
E = 1 4 π ε 0 q r 2 E = \frac{1}{4\pi \varepsilon_0}\frac{q}{r^2} E=4πε01r2q
微元法


d q = λ d s ∴ E = 1 4 π ε 0 λ d s r 2 dq = \lambda ds\\ \therefore E =\frac{1}{4\pi \varepsilon_0}\frac{\lambda ds}{r^2} dq=λdsE=4πε01r2λds
电偶极子形成的电场

​ 这里做了近似,要求z远大于d


E = 1 2 π ε 0 p z 3 E = \frac{1}{2\pi\varepsilon_0}\frac{p}{z^3} E=2πε01z3p
正电荷环形成的电场

​ 圆环半径为R, 点距离圆环圆心的高度是z


E = q z 4 π ε 0 ( z 2 + R 2 ) 3 2 E = \frac{qz}{4\pi\varepsilon_0(z^2+R^2)^{\frac{3}{2}}} E=4πε0(z2+R2)23qz
如果z >> R,那么上式可以简化为
E = q z 4 π ε 0 z 3 E = \frac{qz}{4\pi\varepsilon_0z^3} E=4πε0z3qz
带电圆盘引起的电场

​ 其中 σ \sigma σ是单位面积的电荷量(即面电荷密度)
E = σ 2 ε 0 ( 1 − z z 2 + R 2 ) E = \frac{\sigma}{2\varepsilon_0}(1-\frac{z}{\sqrt{z^2+R^2}}) E=2ε0σ(1z2+R2 z)
当R-> ∞ ∞ 时, E = σ 2 ε \displaystyle E = \frac{\sigma}{2\varepsilon} E=2εσ

偶极子在电场中的特性

​ 对偶极子的力矩
τ ⃗ = p ⃗ × E ⃗ \vec{\tau} = \vec{p}\times \vec{E} τ =p ×E
​ 势能
U = − p ⃗ ⋅ E ⃗ U = -\vec{p}\cdot\vec{E} U=p E
重要名词

  • electric dipole 电偶极子
  • dipole axis 电偶极子轴
  • electric dipole moment 电偶极距 p = q d p = qd p=qd , 其中d是两个电偶极子的距离
  • charge density 电荷密度

Ch 23 GAUSS’LAW(高斯定律)

Flux
ϕ = ∮ E ⃗ ⋅ d A ⃗ \phi = \oint \vec{E}\cdot d\vec{A} ϕ=E dA
Guass’s Law
ε 0 ∮ E ⃗ ⋅ d A ⃗ = q e n c \varepsilon_0 \oint \vec{E}\cdot d\vec{A} = q_{enc} ε0E dA =qenc
带电独立导体的特性

​ 过量的电荷放置在孤立导体上,那么电荷将全部移到导体的表面,导体体内不会有过量的电荷存在,也就是导体处于静电平衡状态中。(金属内部电场为0)

柱面对称(Cylindrical Symmetry)

​ 根据高斯定律,我们可以得到


ε 0 E ( 2 π r h ) = λ h \varepsilon_0 E(2\pi rh) = \lambda h ε0E(2πrh)=λh
​ 所以我们得到


E = λ 2 π ε 0 r E = \frac{\lambda}{2\pi\varepsilon_0r} E=2πε0rλ
一个大的平面上
E = σ ε 0 E = \frac{\sigma}{\varepsilon_0} E=ε0σ
绝缘薄片(Nonconducting Sheet)


ε 0 ( E A + E A ) = σ A \varepsilon_0(EA+EA) = \sigma A ε0(EA+EA)=σA
两块导体平板

​ 这种题目画图示意即可
E = 2 σ 1 ε 0 = σ ε 0 E=\frac{2\sigma_1}{\varepsilon_0}=\frac{\sigma}{\varepsilon_0} E=ε02σ1=ε0σ
球面对称(Spherical Symmetry)

​ 和高中所学一致

Ch 24 ELECTRIC POTENTIAL(电势)

​ 由电偶极子引起的电势(Potential due to an Electric Dipole)

​ 但满足r>>d,有


r ( + ) − r ( − ) ≈ d c o s θ r ( + ) − r ( − ) = r 2 r_{(+)}-r_{(-)} \approx dcos\theta \\r_{(+)}-r_{(-)} = r^2 r(+)r()dcosθr(+)r()=r2
所以我们得到
V = q 4 π ε o d c o s θ r 2 ∴ V = 1 4 π ε o p c o s θ r 2 V = \frac{q}{4\pi\varepsilon_o}\frac{dcos\theta}{r^2}\\\therefore V = \frac{1}{4\pi\varepsilon_o}\frac{pcos\theta}{r^2} V=4πεoqr2dcosθV=4πεo1r2pcosθ
p的方向是从负电荷指向正电荷的

由连续电荷分布引起的电势(Potential Due to a Continuous Charge Distribution)
V = 1 4 π ε 0 ∫ d q r V = \frac{1}{4\pi\varepsilon_0}\int\frac{dq}{r} V=4πε01rdq
电荷线

​ length L,uniform linear density λ \lambda λ,p距离电荷线的距离是d


KaTeX parse error: Expected 'EOF', got '&' at position 4: V &̲= \frac{1}{4\pi…
带电圆盘

​ 微元法,其中p距离圆盘的高度为r


d q = σ ( 2 π R ′ ) ( d R ′ ) ∴ d V = 1 4 π ε 0 σ ( 2 π R ′ ) ( d R ′ ) z 2 + R ′ 2 dq = \sigma (2\pi R')(dR')\\\therefore dV = \frac{1}{4\pi\varepsilon_0}\frac{\sigma (2\pi R')(dR')}{\sqrt{z^2+R'^2}} dq=σ(2πR)(dR)dV=4πε01z2+R2 σ(2πR)(dR)

计算电场
E = − Δ V Δ s E = -\frac{\Delta V}{\Delta s} E=ΔsΔV
​ 即沿着x,y,z方向求导

电势能

​ 静止点电荷系统的电势能,等于把各点电荷从无穷远处移入组成该系统时外力所做的功

孤立带电导体的电势

​ 壳内所有点的电势具有和表面电势相同的值

Ch 25 CAPACITANCE(电容)

计算电场(Electric Field)

​ 因为 E ⃗ \vec{E} E A ⃗ \vec{A} A 总是平行,根据高斯定律


q = ε 0 E A q = \varepsilon_0EA q=ε0EA
计算电势差(Potential difference)


V = ∫ − + E d s V = \int_-^+Eds V=+Eds
平行板电容器(A Parallel-Plate Capacitor)

​ 电势差为
V = E d e V = Ede V=Ede
​ 根据高斯定律,我们得到
C = ε 0 A d C= \frac{\varepsilon_0A}{d} C=dε0A
圆柱形电容器(A Cyclindritor)

​ 根据高斯定律
q = ε 0 E ( 2 π r L ) ∴ V = ∫ − + E d s = q 2 π ε 0 L l n ( b a ) ∴ C = q / V = 2 π ε 0 L l n ( b / a ) q = \varepsilon_0 E(2\pi rL)\\\therefore V= \int_-^+Eds = \frac{q}{2\pi \varepsilon_0 L}ln(\frac{b}{a})\\\therefore C = q/V = 2\pi\varepsilon_0 \frac{L}{ln(b/a)} q=ε0E(2πrL)V=+Eds=2πε0Lqln(ab)C=q/V=2πε0ln(b/a)L
球形电容器

​ 方法是圆柱形电容器是一样的,只是高斯公式的A改变而引起的其他数值的变化而已。
q = ε 0 E ( 4 π r 2 ) q = \varepsilon_0E(4\pi r^2) q=ε0E(4πr2)
​ 最后的表达式为:
C = 4 π ε 0 a b b − a C = 4\pi \varepsilon_0 \frac{ab}{b-a} C=4πε0baab
孤立的球体

​ 我们假定另一个极板是在无穷远处,即为b-> ∞ \infin ,那么我们可以把球形电容器的公式化为:


C = 4 π ε 0 R C = 4\pi \varepsilon_0 R C=4πε0R
电容器储存的能量
U = q 2 2 C = 1 2 C V 2 U = \frac{q^2}{2C} = \frac{1}{2}C V^2 U=2Cq2=21CV2
能量密度(Energy Density)

​ 指的是单位体积的电势能


u = U A d = 1 2 ε 0 E 2 u = \frac{U}{Ad} = \frac{1}{2}\varepsilon_0E^2 u=AdU=21ε0E2
有介电质(Dielectric)的电容器

​ k表示绝缘材料的介电常量,公式中将 ε 0 \varepsilon_0 ε0改为 k ε 0 k\varepsilon_0 kε0即可。介电质的作用是削弱电场

介电质和高斯定律(Dielectrics and Gauss’s Law)

​ 由高斯定律得

​ 注意这里的q是自由电荷
E = q − q ′ ε 0 A   a n d   E = E 0 k = q k ε 0 A ∴ q − q ′ = q k E = \frac{q-q'}{\varepsilon_0A}\ and\ E = \frac{E_0}{k} = \frac{q}{k\varepsilon_0A}\\ \therefore q-q' = \frac{q}{k} E=ε0Aqq and E=kE0=kε0Aqqq=kq

CH26 CURRENT AND RESISTANCE(电流和电阻)

电流的单位 1A 或者 1C/s

电流密度(Current Density)


J = i A J = \frac{i}{A} J=Ai
漂移速率(Drift Speed)

​ n表示单位体积的电荷量, ne是载流子电荷密度,
J ⃗ = ( n e ) v d ⃗ \vec{J} = (ne)\vec{v_d} J =(ne)vd
电阻率(Resistivity)的定义式
ρ = E J \rho = \frac{E}{J} ρ=JE
电阻定律
R = ρ L A R = \rho \frac{L}{A} R=ρAL
电阻率的温度系数
ρ − ρ 0 = ρ 0 α ( T − T 0 ) \rho - \rho_0 = \rho_0 \alpha(T-T_0) ρρ0=ρ0α(TT0)
微观欧姆定律(Microscopic View of Ohn’s Law)

τ \tau τ表示两次连续碰撞的平均时间
ρ = m e 2 n τ \rho = \frac{m}{e^2n\tau} ρ=e2nτm

Ch 27 (电路)

(略)

Ch28 MAFNETIC FIELDS(磁场)

The Definition of B ⃗ \vec{B} B
F B ⃗ = q v B s i n ϕ \vec{F_B} = qvBsin\phi FB =qvBsinϕ
单位
1 T = 1 N A ⋅ m 1T = 1\frac{N}{A\cdot m} 1T=1AmN
作用在电流回路上的力矩(Torque on a Current Loop)
τ = ( N i A ) B s i n θ \tau = (NiA)Bsin\theta τ=(NiA)Bsinθ
磁偶极矩(The Magnetic Dipole Moment)

​ 我们取磁偶极矩的方向为线圈平面法向量的方向,


μ = N i A \mu = NiA μ=NiA
​ 所以我们可以力矩改写为
τ ⃗ = μ ⃗ × B ⃗ \vec\tau = \vec\mu\times\vec B τ =μ ×B
我们发现力矩都等于对应的偶极矩乘以场矢量

类别与电场的电势能 U ( θ ) = − p ⃗ ⋅ E ⃗ U(\theta) = -\vec p \cdot \vec E U(θ)=p E ,磁势能为


U ( θ ) = − u ⃗ ⋅ B ⃗ U(\theta) = -\vec u\cdot \vec{B} U(θ)=u B

ch 29 MAGNETIC FIELDS DUE TO CURRENTS(电流的磁场)

​ Law of Biot and Savart(毕奥-萨伐尔定律)


d B ⃗ = μ 0 4 π i d s ⃗ × r ⃗ r 3 d\vec B = \frac{\mu_0}{4\pi}\frac{id\vec s\times\vec r}{r^3} dB =4πμ0r3ids ×r
​ 重要常量 μ = 1.26 × 1 0 − 6 T ⋅ m / A \mu = 1.26\times10^{-6}T \cdot m/A μ=1.26×106Tm/A

长直导线产生的磁场


B = μ 0 i 2 π R B = \frac{\mu_0 i }{2\pi R} B=2πRμ0i
​ 半无限长的导线自然是一半

圆弧型导线电流的磁场
B = μ 0 i ϕ 4 π R B = \frac{\mu_0 i \phi}{4\pi R} B=4πRμ0iϕ
两平行电流的之间的力
F b a = μ 0 L i a i b 2 π d F_{ba} = \frac{\mu_0Li_ai_b}{2\pi d} Fba=2πdμ0Liaib
同向电流相互吸引,反向电流相互排斥

安培定律
∮ B ⃗ ⋅ d s ⃗ = μ 0 i e n c \oint \vec B \cdot d\vec s = \mu_0 i_{enc} B ds =μ0ienc
​ 只需要考虑回路内的电流即可

长直导线外部的磁场


B ( 2 π r ) = μ 0 i B(2\pi r) = \mu_0 i B(2πr)=μ0i
长直导线内部的磁场
B ( 2 π r ) = μ 0 i r 2 R 2 B(2\pi r) = \mu_0i\frac{r^2}{R^2} B(2πr)=μ0iR2r2
螺线管的磁场(Solenoids and Toroids)

​ 线圈内部的磁场相当强并且在线圈的横截面上是均匀的,外部很弱(接近于0)

​ n表示螺线管单位长度的匝数,则


i e n c = i ( n h ) ∴ B h = μ 0 i n h i e .   B = μ 0 i n i_{enc} = i(nh)\\ \therefore Bh = \mu_0 inh\quad ie.\ B =\mu_0 in ienc=i(nh)Bh=μ0inhie. B=μ0in
螺绕环的磁场
B ( 2 π r ) = μ 0 i N B(2\pi r) = \mu_0iN B(2πr)=μ0iN
作为磁偶极子的载流线圈(Current-Carrying Coil as a Magnetic Dipole)
B ⃗ ( z ) = μ 0 2 π μ ⃗ z 3 \vec{B}(z) = \frac{\mu_0}{2\pi}\frac{\vec\mu}{z^3} B (z)=2πμ0z3μ

Ch30 Induction and inductance(电感和感应)

法拉第电磁感应定律(Faraday‘s Law of Induction)

magnetic flux(磁通量)
ϕ B = ∫ B ⃗ ⋅ d A ⃗ \phi_B = \int \vec B\cdot d\vec A ϕB=B dA
​ 单位$Wb =T\cdot m^2 $

电动势(induced emf)
ε = − N d ϕ B d t \varepsilon = -N\frac{d\phi_B}{dt} ε=NdtdϕB
楞次定律(Lenz’s Law)

感生电场(Induced Electric Fields)

​ 变化的磁场产生电场

​ 感生电动势是 E ⃗ ⋅ d s ⃗ \vec E\cdot d\vec s E ds 沿着闭合路径的总和
ε = ∮ E ⃗ ⋅ d s ⃗ \varepsilon = \oint \vec E\cdot d\vec s ε=E ds
​ 结合法拉第定律,我们得到
∮ E ⃗ ⋅ d s ⃗ = − d ϕ B d t \oint \vec E\cdot d\vec s = - \frac{d\phi_B}{dt} E ds =dtdϕB
​ 感生电场的电场线形成闭合回路。

​ 电势只对静止电荷产生的电场有意义,对由感应产生的电场无意义

电感器和电感(Inductors and Inductance)

​ 电感的定义式为
L = N ϕ B i L = \frac{N\phi_B}{i} L=iNϕB
N ϕ B N\phi_B NϕB称为磁链(magnetic flux linkage)

​ 单位为 H = T ⋅ m 2 / A H = T\cdot m^2/A H=Tm2/A

螺线管的电感
L = N ϕ B i = n l ( μ 0 i n ) A i = μ 0 n 2 A L = \frac{N\phi_B}{i}= \frac{nl(\mu_0 i n)A}{i} = \mu_0n^2A L=iNϕB=inl(μ0in)A=μ0n2A
自感(Self-induction)
ε 0 = − L d i d t \varepsilon_0 = - L \frac{di}{dt} ε0=Ldtdi
电感储存的磁能
U B = 1 2 L i 2 U_B = \frac{1}{2}Li^2 UB=21Li2
磁场的能量密度


u B = U B A l = L i 2 2 A l = 1 2 μ 0 n 2 i 2 = B 2 2 μ 0 u_B = \frac{U_B}{Al} = \frac{Li^2}{2Al} = \frac{1}{2} \mu_0n^2i^2 = \frac{B^2}{2\mu_0} uB=AlUB=2AlLi2=21μ0n2i2=2μ0B2
互感


M 21 = N 2 ϕ 21 i 1 ∴ ε 1 = − M d i 1 d t M_{21} = \frac{N_2\phi_{21}}{i_1}\\\therefore \varepsilon_1 = -M\frac{di_1}{dt} M21=i1N2ϕ21ε1=Mdtdi1

Ch32 MAXWELL’S EQUATIONS (麦克斯韦方程)

​ 感应磁场(induced magnetic fields)
∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t \oint \vec B\cdot d\vec s = \mu_0 \varepsilon_0 \frac{d\phi_E}{dt} B ds =μ0ε0dtdϕE
​ 感生磁场和感生电场方向相反。

​ 总磁场由一个电流和一个变化的电场共同产生
∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t + μ 0 i e n c \oint \vec B \cdot d\vec s = \mu_0\varepsilon_0 \frac{d\phi_E}{dt}+\mu_0i_{enc} B ds =μ0ε0dtdϕE+μ0ienc
​ 位移电流(Displayment Current)
i d = ε 0 d ϕ E d t i_d = \varepsilon_0\frac{d\phi_E}{dt} id=ε0dtdϕE
​ 那安培-麦克斯韦方程可以改写为:
∮ B ⃗ ⋅ d s ⃗ = μ 0 i d , e n c + μ 0 i e n c \oint \vec B\cdot d\vec s = \mu_0i_{d,enc}+\mu_0i_{enc} B ds =μ0id,enc+μ0ienc
​ 极板充电的实际电流与虚拟电流相等

麦格斯为方程组

NameEquation
Guass’s Law for electricity ∮ E ⃗ ⋅ d A ⃗ = q e n c ε 0 \oint \vec E\cdot d\vec A =\displaystyle \frac{q_{enc}}{\varepsilon_0} E dA =ε0qenc联系静电通量与包围的净电荷
Guass’s Law for magnetism ∮ B ⃗ ⋅ d A ⃗ = 0 \oint \vec B\cdot d\vec A = 0 B dA =0联系净磁通量与包围的磁电荷
Faraday’s law ∮ E ⃗ ⋅ d s ⃗ = − d ϕ B d t \oint \vec E\cdot d\vec s =\displaystyle - \frac{d\phi_B}{dt} E ds =dtdϕB联系感应磁场和变化的磁通量
Ampere-Maxwell law ∮ B ⃗ ⋅ d s ⃗ = μ 0 ε 0 d ϕ E d t + μ 0 i e n c \oint \vec B \cdot d\vec s =\displaystyle \mu_0\varepsilon_0 \frac{d\phi_E}{dt}+\mu_0i_{enc} B ds =μ0ε0dtdϕE+μ0ienc联系感应磁场和变化电通量和电流

Ch 33 Electromagenetic waves(电磁波)

​ 电磁场的振幅
E = E m s i n ( k x − ω t ) B = B m s i n ( k x − ω t ) E = E_msin(kx - \omega t)\\ B = B_msin(kx-\omega t) E=Emsin(kxωt)B=Bmsin(kxωt)
​ 波速为光速
c = 1 μ 0 ε 0 c = \frac{1}{\sqrt{\mu_0\varepsilon_0}} c=μ0ε0 1
​ 波速与电场和磁场的振幅关系是:
E m B m = c \frac{E_m}{B_m} = c BmEm=c
​ 坡印亭矢量(Poynting Vector)

​ 该量给出了波在该点的传播方向及能量运输的方向
S ⃗ = 1 μ 0 E ⃗ × B ⃗ \vec S = \frac{1}{\mu_0}\vec E \times \vec B S =μ01E ×B
​ 另一种表示方法为
S = ( 功 率 面 积 ) i n s t S = (\frac{功率}{面积})_{inst} S=()inst
​ 在电磁波中
S = 1 μ 0 E B ∴ S = 1 c μ 0 E 2 S = \frac{1}{\mu_0}EB\\ \therefore S = \frac{1}{c\mu_0}E^2 S=μ01EBS=cμ01E2
​ 波的平均强度 I ,也就是 S a v g S_{avg} Savg,
I = = 1 c μ 0 [ E m 2 s i n 2 ( k x − ω t ) ] a v g I = = \frac{1}{c\mu_0}[E_m^2sin^2(kx-\omega t)]_{avg} I==cμ01[Em2sin2(kxωt)]avg
​ 电场的root-mean-square, $ E_{rms} =\displaystyle \frac{E_m}{\sqrt 2}$, 所以我们可以把式子写为
I = 1 c μ 0 E r m s 2 I= \frac{1}{c\mu_0}E_{rms}^2 I=cμ01Erms2
强度随距离的变化

​ 其中 P s P_s Ps表示源的功率
I = P s 4 π r 2 I = \frac{P_s}{4\pi r^2} I=4πr2Ps

偏振(Polarization)

​ 减半定则(one-half rule)
I = 1 2 I 0 I = \frac{1}{2} I_0 I=21I0
​ 偏振光经过偏振片之后, θ \theta θ E ⃗ \vec E E 和薄片的偏振方向的夹角,透过的平行分量是
E y = E c o s θ E_y = Ecos\theta Ey=Ecosθ
​ 波长强度正比于电场E,所以经过偏振之后我们有,cosine-square rule(余弦平方原则)
I = I 0 c o s 2 θ I = I_0cos^2\theta I=I0cos2θ
​ 反射和折射(Reflection and Refraction)

​ 反射定律——入射角等于出射角
θ 1 ′ = θ 1 \theta_1' = \theta_1 θ1=θ1
​ 折射定律(n1,n2表示不同介质下的折射率)
n 2 s i n θ 2 = n 1 s i n θ 2 n_2sin\theta_2 = n_1sin\theta_2 n2sinθ2=n1sinθ2
​ 反射引起的偏振(Polarization by Reflection)

​ Brewster’s Law(布儒斯特定律)

​ 当光以一个特别的角度(Brewster angle θ B \theta_B θB),反射光没有垂直分量,反射角 θ B \theta_B θB, 入射角 θ r \theta_r θr​, 满足
θ B + θ r = 90 ° \theta_B + \theta_r = 90° θB+θr=90°

Ch 37 Relativity (相对论)

​ 同时性的相对性(The Relativity of Simultaneity)

​ 同时性不是一个绝对的而是一个相对的概念,决定于观察者的运动

​ 时间的相对性

​ time dilation(时间膨胀)
Δ t = Δ t 0 1 − ( v / c ) 2 \Delta t = \frac{\Delta t_0}{\sqrt {1-(v/c)^2}} Δt=1(v/c)2 Δt0
​ speed parameter(速率参量)
β = v c ( < 1 ) \beta = \frac{v}{c}(<1) β=cv(<1)
​ 洛伦兹因子(Lorentz factor)
γ = 1 1 − β 2 = 1 1 − ( v c ) 2 \gamma = \frac{1}{\sqrt{1-\beta^2}} =\displaystyle \frac{1}{\sqrt{1-(\frac{v}{c})^2}} γ=1β2 1=1(cv)2 1
​ 所以我们得到
Δ t = γ Δ t 0 \Delta t = \gamma \Delta t_0 Δt=γΔt0
长度的相对性(The relativity of length)

​ 长度缩短公式
L = L 0 γ L = \frac{L_0}{\gamma} L=γL0
洛伦兹变换(The Lorentz Transformation)

​ 洛伦兹变化方程
x ′ = γ ( x − v t ) t ′ = γ ( t − v x / c 2 ) x' = \gamma (x-vt)\\t' = \gamma (t-vx/c^2) x=γ(xvt)t=γ(tvx/c2)
光的多普勒效应(Doppler Effect)

​ 对于低速多普勒效应,我们有
f = f 0 ( 1 − β + 1 2 β 2 ) f = f_0 (1-\beta + \frac{1}{2}\beta^2) f=f0(1β+21β2)
​ 天文多普勒效应(Astronomical Doppler Effect)

​ 当 β \beta β足够小,上面式子中的 β 2 \beta^2 β2可以把它忽略掉,
f = f 0 ( 1 ± β ) f = c λ v = Δ λ c λ f = f_0(1±\beta)\\f=\frac{c}{\lambda}\\v = \frac{\Delta \lambda c}{\lambda} f=f0(1±β)f=λcv=λΔλc

对于动量来说,
p ⃗ = γ m v ⃗ \vec p = \gamma m \vec v p =γmv
对能量来说,

​ 质量能


E 0 = m c 2 E_0 = mc^2 E0=mc2
​ 物体总能量
E = m c 2 + K = γ m c 2 E = mc^2+K = \gamma mc^2 E=mc2+K=γmc2
​ 孤立系统中物体总能量是不会发生变化的

​ 物体动能
E k = m c 2 ( γ − 1 ) E_k = mc^2(\gamma - 1) Ek=mc2(γ1)

Ch 38 Photons and Matter Wave(光子和物质波)

光子能量
E = h f E = hf E=hf
光电效应(The Photoelectric Effect)

​ 遏止电压(Stopping potential)
K m a x = e V s t o p K_{max} = eV_{stop} Kmax=eVstop
​ 光电效应方程(The Photoelectric effect)
h f = ϕ + K m a x V s t o p = ( h e ) f − ϕ e hf = \phi + K_{max}\\ V_{stop} = (\frac{h}{e})f - \frac{\phi}{e} hf=ϕ+KmaxVstop=(eh)feϕ
光子的动量
p = h λ p = \frac{h}{\lambda} p=λh
康普顿实验(Compton’s experiment)

​ 两个波峰之间的 Δ λ \Delta \lambda Δλ满足
Δ λ = h m c ( 1 − c o s ϕ ) \Delta \lambda = \frac{h}{mc} (1-cos\phi) Δλ=mch(1cosϕ)
物质波
λ = h p \lambda = \frac{h}{p} λ=ph
薛定谔方程(Schrodinger’s Equation)
ψ ( x , y , z , t ) = ψ ( x , y , z ) e − i ω t \psi(x,y,z,t) = \psi(x,y,z)e^{-i\omega t} ψ(x,y,z,t)=ψ(x,y,z)eiωt
∣ Ψ 2 ∣ |\Psi^2| Ψ2​ 是概率密度(probability density)

​ 薛定谔方程一维运动
d 2 ψ d 2 x + 8 π 2 m h 2 [ E − U ( x ) ] ψ = 0 \frac{d^2 \psi}{d^2 x} + \frac{8\pi ^2 m }{h^2}[E-U(x)]\psi = 0 d2xd2ψ+h28π2m[EU(x)]ψ=0
海参堡不确定原理(Heisenberg’s Uncentainty Principle)

​ 其中 ℏ = h 2 π \hslash = \displaystyle\frac{h}{2\pi} =2πh
Δ x ⋅ Δ p x ≥ ℏ Δ y ⋅ Δ p y ≥ ℏ Δ z ⋅ Δ p z ≥ ℏ \Delta x \cdot \Delta p_x \ge \hslash\\ \Delta y \cdot \Delta p_y \ge \hslash\\ \Delta z \cdot \Delta p_z \ge \hslash ΔxΔpxΔyΔpyΔzΔpz
势垒隧穿 (barrier tunneling)

​ 透射系数(transmission coefficient)
T = e − 2 k L , k = 8 π 2 m ( U 0 − E ) h 2 T = e^{-2kL},k = \sqrt{\frac{8\pi^2 m (U_0-E)}{h^2}} T=e2kL,k=h28π2m(U0E)

Ch 39 再论物质波(More about matter waves)

能级的能量
E n = ( h 2 8 m L 2 ) n 2 E_n = (\frac{h^2}{8mL^2})n^2 En=(8mL2h2)n2
检测的概率(Probability of Detection)
p ( x ) = ψ 2 ( x ) d x p(x) = \psi^2(x)dx p(x)=ψ2(x)dx
0 ≤ x ≤ L 0\le x \le L 0xL 区间里,我们有
ψ 2 ( x ) = A 2 s i n 2 ( n π L x ) , n = 1 , 2 , 3 , 4 , … … \psi ^2(x) = A^2 sin^2(\frac{n\pi}{L} x),n=1,2,3,4,…… ψ2(x)=A2sin2(Lnπx),n=1,2,3,4,
根据归一性(积分为1),我们得到
A = 2 / L A = \sqrt {2/L} A=2/L
二维和三维的电子陷阱(Two and Three-Dimensional Electron Traps)
E n x . n y = h 2 8 m ( n x 2 L x 2 + n y 2 L y 2 ) E_{nx.ny} = \frac{h^2}{8m}(\frac{n_x^2}{L_x^2}+\frac{n_y^2}{L_y^2}) Enx.ny=8mh2(Lx2nx2+Ly2ny2)
氢原子的势能
U = − 1 4 π ε 0 e 2 r U = - \frac{1}{4\pi \varepsilon_0}\frac{e^2}{r} U=4πε01re2
氢原子各量子态能量由下式子给出:
E n = − 13.6 e V n 2 , f o r   n = 1 , 2 , 3 , 4. … … E_n = - \frac{13.6eV}{n^2},for\ n = 1,2,3,4.…… En=n213.6eV,for n=1,2,3,4.

  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值