Matrices

写在前面

花了十天,从头到尾看完了Dr. Strang的线性代数,不说鹈鹕灌顶,却也是令人豁然开朗,顿感大一的线性代数学习完全是在蹉跎时光。于是我打算分几篇文章分享一下这段时间的收获,也算是做一个总结和回顾。

那这第一篇文章,就来介绍一些基本的、有用的、优美的矩阵吧。

前排声明,本人数学基础约等于0,有写错的地方欢迎指正。

未加特殊说明,以下矩阵均为n阶方阵。

可逆矩阵 Invertible Matrix

可逆矩阵,又称满秩矩阵、非奇异矩阵,是线性代数中非常重要的一类矩阵。如下式所示,B即为A的逆矩阵。
A B = I B = A − 1 \begin{aligned} \mathbf{AB}&=\mathbf{I} \\ \mathbf{B}&=\mathbf{A^{-1}} \end{aligned} ABB=I=A1
可逆矩阵拥有以下性质

  • 矩阵 A \mathbf{A} A各行/各列线性无关
  • 矩阵 A \mathbf{A} A的行空间/列空间为n维,零空间/左零空间为0维(即只含零向量)
  • ∣ A ∣ ≠ 0 \mathbf{\left| A\right|\neq 0} A=0
  • 方程组 A x = b \mathbf{Ax}=\mathbf{b} Ax=b有唯一解
  • B \mathbf{B} B也可逆,则 ( A B ) − 1 = B − 1 A − 1 \mathbf{(AB)^{-1}}=\mathbf{B^{-1}A^{-1}} (AB)1=B1A1
  • A − 1 \mathbf{A^{-1}} A1的特征值是 A \mathbf{A} A的倒数
  • A − 1 = 1 ∣ A ∣ A ∗ \mathbf{A^{-1}}=\mathbf{\frac{1}{\left| A\right|}A^{*}} A1=A1A A ∗ \mathbf{A^{*}} A A \mathbf{A} A的伴随矩阵

对称矩阵 Symmetric Matrix

对称矩阵是指以主对角线为对称轴,各元素对应相等的矩阵,即:
A T = A \begin{aligned} \mathbf{A^T}=\mathbf{A} \end{aligned} AT=A

对称矩阵拥有以下性质

  • 矩阵 A \mathbf{A} A的特征值为实数,有一组正交的特征向量
  • 矩阵 A \mathbf{A} A可以进行更好的对角化, A = S Λ S − 1 = Q Λ Q T \mathbf{A}=\mathbf{S \Lambda S^{-1}}=\mathbf{Q \Lambda Q^{T}} A=S1=QT

正定矩阵 Positive Definite Matrix

满足下式的矩阵为正定矩阵:
x T A x > 0 ( x ≠ 0 ) \begin{aligned} \mathbf{x^T Ax}>\mathbf{0\left (x \neq0 \right )} \end{aligned} xTAx>0(x=0)

正定矩阵 A \mathbf{A} A拥有以下性质

  • 正定矩阵是一类特殊的对称矩阵
  • 矩阵 A \mathbf{A} A的特征值均为正数
  • 矩阵 A \mathbf{A} A左上角的所有 k × k ( 1 ≤ k ≤ n ) k\times k\left ( 1\leq k\leq n \right ) k×k(1kn)阶子行列式数值均为正
  • B \mathbf{B} B为正定矩阵,则 A + B \mathbf{A+B} A+B也为正定矩阵

对角矩阵 Diagonal Matrix

对角矩阵是除了主对角线之外的元素皆为0的矩阵,例如:
A = ( λ 1 0 0 0 λ 2 0 0 0 λ 3 ) \mathbf{A}=\begin{pmatrix} \lambda_1 & 0 &0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \\ \end{pmatrix} A= λ1000λ2000λ3
对称矩阵拥有以下性质

  • 对角矩阵是一类特殊的对称矩阵
  • 对角线上的值即为特征值
  • 对角矩阵的乘积仍为对角阵

反对称矩阵 Skew-symmetric Matrix

反对称矩阵,又称斜对称矩阵或交错矩阵,指满足下式的矩阵:
A T = − A \begin{aligned} \mathbf{A^T}=\mathbf{-A} \end{aligned} AT=A

对称矩阵拥有以下性质

  • 矩阵 A \mathbf{A} A的主对角线元素均为0
  • 矩阵 A \mathbf{A} A的特征值为纯虚数,有一组正交的特征向量

正交矩阵 Orthogonal Matrix

(实数)正交矩阵,指满足下式的矩阵:
A T A = I \begin{aligned} \mathbf{A^T A}=\mathbf{I} \end{aligned} ATA=I

正交矩阵拥有以下性质

  • 矩阵 A \mathbf{A} A各行/各列标准正交
  • 矩阵 A \mathbf{A} A的特征值为 ± 1 \pm 1 ±1,有一组正交的特征向量
  • A − 1 = A T \mathbf{A^{-1}}=\mathbf{A^T} A1=AT,因此 A \mathbf{A} A一定是可逆矩阵

厄米特矩阵 Hermitian Matrix

厄米特矩阵是指以主对角线为对称轴,各元素对应共轭相等的矩阵,即:
A H = A ˉ T = A \begin{aligned} \mathbf{A^H}=\mathbf{\bar{A}^T}=\mathbf{A} \end{aligned} AH=AˉT=A

厄米特矩阵拥有以下性质

  • 对称矩阵是实数域中的厄米特矩阵
  • 矩阵 A \mathbf{A} A的对角线为实数
  • 矩阵 A \mathbf{A} A的特征值为实数,有一组正交的特征向量

幺正矩阵 Unitary Matrix

幺正矩阵是指满足下式的矩阵:
A H A = I \begin{aligned} \mathbf{A^H}\mathbf{A}=\mathbf{I} \end{aligned} AHA=I

幺正矩阵拥有以下性质

  • 正交矩阵是实数域中的幺正矩阵
  • 矩阵 A \mathbf{A} A各行/各列标准正交
  • 矩阵 A \mathbf{A} A的特征值都是模为1的复数
  • A − 1 = A H \mathbf{A^{-1}}\mathbf{=A^H} A1=AH

黑塞矩阵 Hessian Matrix

黑塞矩阵,是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率,二元黑塞矩阵形式如下:
A = ( ∂ 2 f ∂ x 1 2 ∂ 2 f ∂ x 1 ∂ x 2 ∂ 2 f ∂ x 2 ∂ x 1 ∂ 2 f ∂ x 2 2 ) \begin{aligned} \mathbf{A}=\begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \\ \end{pmatrix} \end{aligned} A=(x122fx2x12fx1x22fx222f)

当函数 f f f在点 M 0 \mathbf{M_0} M0的邻域内具有二阶连续偏导时,矩阵 A \mathbf{A} A为对称矩阵,若此时一阶导数为0,则有如下结果:

  • 当矩阵 A \mathbf{A} A为正定矩阵时,函数 f f f在点 M 0 \mathbf{M_0} M0有极小值
  • 当矩阵 A \mathbf{A} A为负定矩阵时,函数 f f f在点 M 0 \mathbf{M_0} M0有极大值
  • 当矩阵 A \mathbf{A} A为不定矩阵时,函数 f f f在点 M 0 \mathbf{M_0} M0无极值
  • 当矩阵 A \mathbf{A} A为半正定/半负定矩阵时,函数 f f f在点 M 0 \mathbf{M_0} M0有可疑极值,需再做判断

投影矩阵 projection matrix

投影矩阵,其作用是将其他向量投影到某空间中,这里不做详细推导,仅展示结论。

对于任意列满秩矩阵 A \mathbf{A} A(大概率非方阵),矩阵 P \mathbf{P} P可以将任意向量投影到矩阵 A \mathbf{A} A的列空间中:
P = a a T a T a ( n = 1 ) P = A ( A T A ) − 1 A T \begin{aligned} \mathbf{P}&=\mathbf{\frac{aa^T}{a^T a}}(n=1) \\ \mathbf{P}&=\mathbf{A(A^T A)^{-1}A^T} \end{aligned} PP=aTaaaT(n=1)=A(ATA)1AT

投影矩阵拥有以下性质

  • 当矩阵 A \mathbf{A} A列满秩时, P \mathbf{P} P存在, r a n k ( P ) = r a n k ( A ) rank(\mathbf{P})=rank(\mathbf{A}) rank(P)=rank(A)
  • P k = P \mathbf{P^k}=\mathbf{P} Pk=P,投影次数不影响效果
  • P = P T \mathbf{P}=\mathbf{P^T} P=PT,投影矩阵是对称矩阵
  • 矩阵 P \mathbf{P} P的特征值为1与0

马尔可夫矩阵 Markov Matrix

马尔可夫矩阵,其任意元素非负,且每列元素和为1,例如:
A = ( 0.1 0.01 0.3 0.2 0.99 0.3 0.7 0 0.4 ) \mathbf{A}=\begin{pmatrix} 0.1 & 0.01 & 0.3 \\ 0.2 & 0.99 & 0.3 \\ 0.7 & 0 & 0.4 \\ \end{pmatrix} A= 0.10.20.70.010.9900.30.30.4
马尔可夫矩阵拥有以下性质

  • 矩阵 A \mathbf{A} A一定有一个特征值为1
  • 其余特征值的绝对值均小于1

相似矩阵 Similar Matrix

相似矩阵并不是某个矩阵的名字,而是描述两个矩阵间的关系,当矩阵 A \mathbf{A} A与矩阵 B \mathbf{B} B满足以下关系时,矩阵 A \mathbf{A} A与矩阵 B \mathbf{B} B为相似矩阵:
B = M − 1 A M \begin{aligned} \mathbf{B}=\mathbf{M^{-1}AM} \end{aligned} B=M1AM
相似矩阵拥有以下性质

  • 相同的特征值
  • r a n k ( B ) = r a n k ( A ) rank(\mathbf{B})=rank(\mathbf{A}) rank(B)=rank(A)
  • 行列式、迹相等(可不是吗)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值