特征值、特征向量、对角化

特征值、特征向量、对角化

A = S Λ S − 1 \mathbf{A}=\mathbf{S\Lambda S^{-1}} A=S1

如果矩阵 A \mathbf{A} A具有 n 个线性无关的特征向量,就可以将它们作为列向量可以组成一个可逆方阵 S \mathbf{S} S,将矩阵 A \mathbf{A} A的特征值组成对角矩阵 Λ \mathbf{\Lambda} Λ,则有
A = S Λ S − 1 \begin{aligned} \mathbf{A}=\mathbf{S\Lambda S^{-1}} \end{aligned} A=S1

特征值与特征向量

(这大概是一个矩阵最核心的东西了吧)

简略的定义:对于某个 x \mathbf{x} x,有 A x = λ x \mathbf{Ax}=\lambda\mathbf{x} Ax=λx,则 λ \lambda λ是矩阵 A \mathbf{A} A的一个特征值, x \mathbf{x} x是矩阵 A \mathbf{A} A的一个特征向量。

求解特征值

首先不予证明的列出两条性质:

  • 矩阵对角线元素的和 = 特征值之和
  • 矩阵行列式的值 = 特征值之积

不难发现他们的形式有些类似于韦达定理,感兴趣的朋友可以自行推导一下这两条性质。

下面给出求解特征值的一般方法:
A x = λ x ( A − λ I ) x = 0 ∵ x 不为 0 向量 ∴ ( A − λ I ) 是奇异矩阵 ∣ ( A − λ I ) ∣ = 0 \begin{aligned} \mathbf{Ax}&=\lambda\mathbf{x}\\ (\mathbf{A}-\lambda\mathbf{I})\mathbf{x}&=\mathbf{0}\\ \because\mathbf{x不为}&\mathbf{0向量}\\ \therefore (\mathbf{A}-\lambda\mathbf{I})&\mathbf{是奇异矩阵}\\ \left| (\mathbf{A}-\lambda\mathbf{I}) \right|&=0\\ \end{aligned} Ax(AλI)xx不为(AλI)(AλI)=λx=00向量是奇异矩阵=0
以一个二阶方阵为例:
A = ( 3 1 1 3 ) ∣ ( A − λ I ) ∣ = 0 ∣ 3 − λ 1 1 3 − λ ∣ = λ 2 − 6 λ + 8 = 0 解得: { λ 1 = 4 λ 2 = 2 求解特征向量: ( A − λ 1 I ) x 1 = 0 ( − 1 1 1 − 1 ) x 1 = 0 x 1 = ( 1 , 1 ) T ( A − λ 2 I ) x 2 = 0 x 2 = ( − 1 , 1 ) T \begin{aligned} \mathbf{A}&=\begin{pmatrix} 3 & 1 \\ 1 & 3 \\ \end{pmatrix}\\ \\ \left| (\mathbf{A}-\lambda\mathbf{I}) \right|&=0\\ \begin{vmatrix} 3-\lambda & 1 \\ 1 & 3-\lambda \\ \end{vmatrix}&=\lambda^2-6\lambda+8=0 \\ \mathbf{解得:}\quad \left\{\begin{matrix} \lambda_1=4 \\ \lambda_2=2 \end{matrix}\right.\\ \\ \mathbf{求解特征向量:}\quad (\mathbf{A}-\lambda_1\mathbf{I})\mathbf{x_1}&=\mathbf{0}\\ \begin{pmatrix} -1 & 1 \\ 1 & -1 \\ \end{pmatrix}\mathbf{x_1}&=\mathbf{0}\\ \mathbf{x_1}&=(1,1)^\mathbf{T}\\ \\ (\mathbf{A}-\lambda_2\mathbf{I})\mathbf{x_2}&=\mathbf{0}\\ \mathbf{x_2}&=(-1,1)^\mathbf{T}\\ \end{aligned} A(AλI) 3λ113λ 解得:{λ1=4λ2=2求解特征向量:(Aλ1I)x1(1111)x1x1(Aλ2I)x2x2=(3113)=0=λ26λ+8=0=0=0=(1,1)T=0=(1,1)T

对角化

以上述矩阵 A \mathbf{A} A为例:
A = S Λ S − 1 = ( 1 − 1 1 1 ) S ( 4 0 0 2 ) Λ ( 0.5 0.5 − 0.5 0.5 ) S − 1 \begin{aligned} \mathbf{A}&=\mathbf{S\Lambda S^{-1}}\\ &=\underset{\mathbf{S}}{\begin{pmatrix} 1 & -1 \\ 1 & 1 \\ \end{pmatrix}} \underset{\mathbf{Λ}}{\begin{pmatrix} 4 & 0 \\ 0 & 2 \\ \end{pmatrix}} \underset{\mathbf{S^{-1}}}{\begin{pmatrix} 0.5 & 0.5 \\ -0.5 & 0.5 \\ \end{pmatrix}} \end{aligned} A=S1=S(1111)Λ(4002)S1(0.50.50.50.5)

应用

对角化可被用来有效的计算矩阵 A \mathbf{A} A的幂,假如矩阵是可对角化的,则有下式成立:
A = S Λ S − 1 A k = S Λ k S − 1 \begin{aligned} \mathbf{A}&=\mathbf{S\Lambda S^{-1}}\\ \mathbf{A^k}&=\mathbf{S\Lambda^k S^{-1}}\\ \end{aligned} AAk=S1=SΛkS1

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值