Text Data for Trading – Sentiment Analysis 代码复现(一)

本文介绍了如何使用spaCy库和textacy库构建NLP管道,进行文本数据交易的ML算法。从分词、词性标注到命名实体识别和依赖关系解析,通过实例展示了在新闻评论和BBC新闻数据上的应用,旨在预测未来价格走势和市场分析。
摘要由CSDN通过智能技术生成

Test Data for Trading–Sentiment Analysis系列文章是对《Machine Learning for Algorithmic Trading》第十四章内容的讲解。因为中英文的文本分析存在较大差异,顾此系列没有选取中国市场的材料做为代码复现的数据,而是选择书后源代码进行复现。

应用:文本数据交易的ML算法依赖于从能够帮助预测未来价格走势的特征中提取有意义的信息。应用范围从新闻的短期市场影响的应用到资产价值的驱动力的长期基本面分析,有如下的例子:
①给产品的评论进行情绪评分,以此来评估公司的竞争地位以及行业走势。
②检测信用合同中的异常情况,以检测违约的概率和影响
③从影响的方向、幅度和受影响的实体角度来预测新闻的影响。
1、从文档到token—NLP管道
在本节中将会演示如何使用开源的python库spaCy来构建一个NLP管道。textacy库建立在spaCy的基础上,并且提供对spaCy属性和其他功能的简单复现。

import warnings
warnings.filterwarnings('ignore')#当代码段中红色警告太多时可以引入warnings包
%matplotlib inline
import sys
from pathlib import Path
import pandas as pd
import spacy#引入spacy包
from spacy import displacy
from textacy.extract import ngrams, entities#引入textacy包

上述代码段已经将spaCy库引入完成,在下段代码中我们继续引入其他需要用到的语言模型。

%%bash
python -m spacy download en_core_web_sm#让spaCy使用英语模型,将模型存储到变量nlp
%%bash
python -m spacy download es_core_news_sm#继续在AnCora语料库和WikiNER上训练的西班牙语言模型
%%bash
python -m spacy link en_core_web_sm en --force;
python -m spacy link es_core_news_sm es --force;#创造快捷方式名称
!{
   sys.executable} -m spacy validate#验证是否安装成功

2、获取数据

DATA_1 = Path('..', 'data')

在一个文本上调用spaCy模型时,spaCy会首先对文本进行标记,产生一个文档对象,并且将Doc格式的对象通过处理管道(该管道可以自定义)在默认情况下,它包括一个标记器、一个分析器和一个实体识别器。每个管道组件都返回经过处理的文档,然后将文档再传递给下一个组件。

3、一个简单的分词代码段

import spacy
nlp=spacy.load("en_core_web_sm")
#导入英文处理库,直接写nlp=spacy。load(en)会出现报错
doc=nlp('Weather is so good, very windy and sunny. We can play baseball.')
for token in doc:
    pr
亚马逊评论的情感分析是指对顾客在亚马逊购买产品后所撰写的评论进行情感分类和评估。亚马逊作为全球最大的电子商务平台之一,每天都有大量的产品评论被发布。这些评论反映了消费者对于产品的使用体验、商品质量、商家服务等方面的评价和观点。 通过对亚马逊评论进行情感分析,我们能够了解到顾客是否对产品满意或不满意。情感分析技术能够识别文本中所表达的情感态度,通常分为积极、消极和中性三类。通过对评论进行情感分类,我们可以获得客观的数据指标,用以评估产品或商家的口碑和市场反应。 对于商家来,亚马逊评论的情感分析可以帮助他们了解消费者的需求和偏好,改进产品设计、服务质量,从而提高用户满意度。同时,情感分析还可以用于监测竞争对手的产品表现,了解市场动态和消费者心理。对于消费者来,情感分析可以提供其他客户对产品的评价和推荐,为购物决策提供参考,提升购物体验。 然而,亚马逊评论的情感分析也存在一些挑战。首先,评论的文本通常较短,语言风格多样,包含大量的缩写、拼写错误、多种语言混用等,这给情感分析带来一定的困难。其次,评论中可能存在讽刺、嘲笑、讽刺等复杂的情感表达,这需要情感分析模型能够准确理解和分析。 综上所述,亚马逊评论的情感分析可以为商家和消费者提供有价值的信息。随着自然语言处理技术的发展,情感分析将越来越重要,为商家和消费者提供更好的购物体验和决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值