SDE文献——A Maximum Principle For Controlled Stochastic Factor Model

本文使用随机最大值原理来解决给定随机因子模型在因子不可观测时的最优控制问题。该因子由其条件分布代替,我们使用滤波理论SED 的部分观测控制问题转换为 SPED 的完全观测控制问题。本文给出了受控 SDE 和退化 SPDE 系统的充分极大原则,推导出等效随机最大值原理。 当便利收益率不可观察时,我们应用获得的结果来研究给定位置的商品衍生品的定价对冲问题。利用本文得到的充分最大值原理可以来解决随机因子模型的效用最大化问题。

模型与问题表述

  • 举例说明

滤波概率空间 ( Ω , F , { F t } t ∈ [ 0 , T ] , P ) (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\in[0,T]}, \mathbb{P}) (Ω,F,{Ft}t[0,T],P) 上给出两个相关的标准布朗运动 W 1 ( t ) W^1(t) W1(t) W 2 ( t ) W^2(t) W2(t) ,相关系数为 ρ ∈ [ − 1 , 1 ] \rho\in[-1,1] ρ[1,1]
代理人希望购买一种或有索取权,在时间 T T T 支付 Π ( S ∗ ) \Pi(S_∗) Π(S) S ∗ S_∗ S 表示商品现货价格。 不幸的是,关于 S ∗ S_∗ S 上的衍生品没有市场,只能在场外交易。 一种方法是对类似交易资产的索赔进行定价和对冲。 但是,使用相应的交易资产会使代理人面临基差风险,可以将其视为运输成本、市场需求等多个变量的函数。可以将基差风险视为非贸易区位因素。因此 ,索赔取决于商品(交易资产)价格 S ~ \tilde{S} S~ 和非贸易区位因素 B B B,即 Π = Π ( S ~ ( T ) , B ) \Pi=\Pi(\tilde{S}(T),B) Π=Π(S~(T),B)
假设便利未观测收益率 Z ( t ) Z(t) Z(t) 和观测现货价格 S ~ ( t ) \tilde{S}(t) S~(t) 的动态分别由以下 SDE 给出
d S ~ ( t ) = ( r ( t ) − Z ( t ) ) S ~ ( t ) d t + σ S ~ ( t ) d W 1 ( t ) d Z ( t ) = k ( θ − Z ( t ) ) d t + γ d W 2 ( t ) d\tilde{S}(t)=(r(t)-Z(t))\tilde{S}(t)dt+\sigma\tilde{S}(t)dW^1(t)\\ dZ(t)=k(\theta-Z(t))dt+\gamma dW^2(t) dS~(t)=(r(t)Z(t))S~(t)dt+σS~(t)dW1(t)dZ(t)=k(θZ(t))dt+γdW2(t)
Y ( t ) = log ⁡ S ~ ( t ) Y(t)=\log\tilde{S}(t) Y(t)=logS~(t),则有
d Y ( t ) = ( r ( t ) − 1 2 σ 2 − Z ( t ) ) d t + σ d W 1 ( t ) d Z ( t ) = k ( θ − Z ( t ) ) d t + ρ γ d W 1 ( t ) + 1 − ρ 2 γ d W ⊥ ( t ) dY(t)=\left(r(t)-\frac{1}{2}\sigma^2-Z(t)\right)dt+\sigma dW^1(t)\\ dZ(t)=k(\theta-Z(t))dt+\rho\gamma dW^1(t)+\sqrt{1-\rho^2}\gamma dW^\bot(t) dY(t)=(r(t)21σ2Z(t))dt+σdW1(t)dZ(t)=k(θZ(t))dt+ργdW1(t)+1ρ2 γdW(t)
其中 W ⊥ ( t ) W^\bot(t) W(t) ( Ω , F , { F t } t ∈ [ 0 , T ] , P ) (\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\in[0,T]}, \mathbb{P}) (Ω,F,{Ft}t[0,T],P) 上独立于 W 1 ( t ) W^1(t) W1(t) 的标准 BM, r ( t ) r(t) r(t) 表示短期利率并假设它是确定的。则无风险资产 S 0 ( t ) S^0(t) S0(t) 的价格满足以下 ODE
d S 0 ( t ) = S 0 ( t ) r ( t ) d t dS^0(t)=S^0(t)r(t)dt dS0(t)=S0(t)r(t)dt
u ( t ) u(t) u(t) 表示投资于风险资产的资产数量。假设 u ( t ) u(t) u(t) 取值是给定的闭集合 U U U。根据自筹资金条件,资产 X ( t ) X(t) X(t) 的动态由以下 SDE 给出
d X ( t ) = u ( t ) d S ~ ( t ) S ~ ( t ) + ( 1 − u ( t ) ) d S 0 ( t ) S 0 ( t ) = ( r ( t ) X ( t ) − Z ( t ) u ( t ) ) d t + σ u ( t ) d W 1 ( t ) = ( r ( t ) X ( t ) − ( r − 1 2 σ 2 ) u ( t ) ) d t + σ u ( t ) d Y ( t ) \begin{aligned} dX(t)&=u(t)\frac{d\tilde{S}(t)}{\tilde{S}(t)}+(1-u(t))\frac{dS^0(t)}{S^0(t)}\\ &=(r(t)X(t)-Z(t)u(t))dt+\sigma u(t)dW^1(t)\\ &=\left(r(t)X(t)-\left(r-\frac{1}{2}\sigma^2\right)u(t)\right)dt+\sigma u(t)dY(t) \end{aligned} dX(t)=u(t)S~(t)dS~(t)+(1u(t))S0(t)dS0(t)=(r(t)X(t)Z(t)u(t))dt+σu(t)dW1(t)=(r(t)X(t)(r21σ2)u(t))dt+σu(t)dY(t)
效用无差异价格给出如下:效用函数为 U U U,初始资产 X ( 0 ) = x X(0)=x X(0)=x 且没有索赔能力的代理人会使其最终资产 X x , u ( T ) X^{x,u}(T) Xx,u(T) 的预期效用最大化;即
V o ( x ) = sup ⁡ u ∈ U a d E [ U ( X x , u ( T ) ) ] = E [ U ( X x , u ^ ( T ) ) ] V_o(x)=\sup_{u\in\mathcal{U}_{ad}}\mathbb{E}\left[U\left(X^{x,u}(T)\right)\right]=\mathbb{E}\left[U\left(X^{x,\hat{u}}(T)\right)\right] Vo(x)=uUadsupE[U(Xx,u(T))]=E[U(Xx,u^(T))]
其中 u ^ \hat{u} u^ 是最优控制(如果存在), U a d \mathcal{U}_{ad} Uad 为可接受范围。具有初始资产 x x x 且愿意在 T T T 时刻为单位索偿 Π \Pi Π 支付 p b p^b pb 的代理人的预期效用最大化如下
V Π ( x − p b ) = sup ⁡ u ∈ U a d E [ U ( X x − p , u ( T ) + Π ( S ~ ( T ) , B ) ) ] = E [ U ( X x − p , u ^ ( T ) + Π ( S ~ ( T ) , B ) ) ] \begin{aligned} V_\Pi(x-p^b)&=\sup_{u\in\mathcal{U}_{ad}}\mathbb{E}\left[U\left(X^{x-p,u}(T)+\Pi\left(\tilde{S}(T),B\right)\right)\right]\\ &=\mathbb{E}\left[U\left(X^{x-p,\hat{u}}(T)+\Pi\left(\tilde{S}(T),B\right)\right)\right] \end{aligned} VΠ(xpb)=uUadsupE[U(Xxp,u(T)+Π(S~(T),B))]=E[U(Xxp,u^(T)+Π(S~(T),B))]
效用无差异定价原则是指在时间 T T T 支付 Π \Pi Π 的索赔公平价格是方程的解
V Π ( x − p b ) = V o ( x ) V_\Pi(x-p^b)=V_o(x) VΠ(xpb)=Vo(x)
假设索赔是一个凹函数。这种索赔的例子是远期合约。 F t S ~ = σ ( S ~ ( t 1 ) , 0 ≤ t 1 ≤ t ) \mathcal{F}_t^{\tilde{S}}=\sigma(\tilde{S}(t_1),0\le t_1\le t) FtS~=σ(S~(t1),0t1t) 是由商品价格生成的 σ − \sigma- σ代数,可接受范围 U a d \mathcal{U}_{ad} Uad定义如下
U a d = { u ( t ) : u  is  F S ~ -progressively measureable;  E [ ∫ 0 T u 2 ( t ) d t ] < ∞ , X x , u ( t ) ≥ 0 , P -a.s. for all  t ∈ [ 0 , T ] } \mathcal{U}_{ad}=\left\{u(t):\text{$u$ is $\mathbb{F}^{\tilde{S}}$-progressively measureable; }E\left[\int_0^Tu^2(t)dt\right]<\infty, X^{x,u}(t)\ge0, \text{$\mathbb{P}$-a.s. for all }t\in[0,T]\right\} Uad={u(t):u is FS~-progressively measureable; E[0Tu2(t)dt]<,Xx,u(t)0,P-a.s. for all t[0,T]}
Assumption A1. B = B ( Z ( T ) ) + B ˉ \quad B=B(Z(T))+\bar{B} B=B(Z(T))+Bˉ,其中 B B B 是光滑函数, B ˉ \bar{B} Bˉ 是独立于 F T \mathcal{F}_T FT 的随机变量。由于 B ˉ \bar{B} Bˉ 独立于 F T \mathcal{F}_T FT,则 V Π ( x − p b ) V_\Pi(x-p^b) VΠ(xpb) 可改写成
请添加图片描述
由于代理只能观察到商品价格产生的信息;也就是过滤 F S ~ = { F t S ~ } t ≥ 0 \mathbb{F}^{\tilde{S}}=\{\mathcal{F}_t^{\tilde{S}}\}_{t\ge0} FS~={FtS~}t0 给出的信息,并没有观察到便利收益,所以从建模的角度看,上述问题可以看成是部分观察控制问题。动态观测过程 Y ( t ) = ln ⁡ S ~ ( t ) Y(t)=\ln{\tilde{S}(t)} Y(t)=lnS~(t) 中的漂移系数依附于独立于 Y ( t ) Y(t) Y(t) 的未观测因子 Z ( t ) Z(t) Z(t),而未观测因子 Z ( t ) Z(t) Z(t) 的漂移系数仅依附于 Z ( t ) Z(t) Z(t)。资产的漂移与资产过程本身息息相关,其扩散与过程无关。
在接下来的内容中,我们考虑了一个更通用的商品模型和未观察到的便利收益率价格,其中将上述模型作为特殊情况。滤波理论可使 SDE 系统的部分观测控制问题 (上式) 简化为 SDE 和 SPDE 系统的完全观测控制问题。

  • 从部分信息到全部信息

下面将考虑包含上述示例的观察到和未观察到两方面因素的一般模型。 W ⊥ W^\bot W W W W 是两个独立的 m 维 BM。假设 Y ( t ) Y(t) Y(t) Z ( t ) Z(t) Z(t) 分别是 n n n 维和 d d d 维过程,其动力学分别由下式给出:
d Y ( t ) = h ( t , Z ( t ) , Y ( t ) ) d t + σ ( t , Y ( t ) ) d W ( t ) d Z ( t ) = b ( t , Z ( t ) , Y ( t ) ) d t + α ( t , Z ( t ) , Y ( t ) ) d W ( t ) + γ ( t , Z ( t ) , Y ( t ) ) d W ⊥ ( t ) dY(t)=h(t,Z(t),Y(t))dt+\sigma(t,Y(t))dW(t)\\ dZ(t)=b(t,Z(t),Y(t))dt+\alpha(t,Z(t),Y(t))dW(t)+\gamma(t,Z(t),Y(t))dW^\bot(t) dY(t)=h(t,Z(t),Y(t))dt+σ(t,Y(t))dW(t)dZ(t)=b(t,Z(t),Y(t))dt+α(t,Z(t),Y(t))dW(t)+γ(t,Z(t),Y(t))dW(t)
其中 Y ( 0 ) = 0 , Z ( 0 ) = ε Y(0)=0,Z(0)=\varepsilon Y(0)=0,Z(0)=ε。进一步做出以下假设:

Assumption A2.
请添加图片描述
该模型虽然没有有界漂移,但可以使用定位参数来考虑线性增长系数。

F t Y = σ { Y ( s ) , 0 ≤ s ≤ t } \mathcal{F}^Y_t=\sigma\{Y(s),0\le s\le t\} FtY=σ{Y(s),0st} 是由观测过程 Y ( t ) Y(t) Y(t) 生成的 σ \sigma σ-代数。该 σ \sigma σ-代数等价于 S ~ \tilde{S} S~ 生成的 σ \sigma σ-代数。因为可接受的控制必须适应于 F t Y \mathcal{F}^Y_t FtY。因此,为了获得这种控制,在最优控制问题中,未知参数 Z ( t ) Z(t) Z(t) 被替换为它对 F t Y \mathcal{F}^Y_t FtY 的条件期望。
假设 D ( t ) = D ( t , Y ( T ) ) : = σ σ ′ ( t , Y ( t ) ) D(t)=D(t,Y(T)):=\sigma\sigma^{'}(t,Y(t)) D(t)=D(t,Y(T)):=σσ(t,Y(t)) 是对称可逆的,过程的定义如下:
d φ ( t ) = − φ ( t ) h ⊤ ( t , Z ( t ) , Y ( t ) ) D − 1 / 2 ( t , Y ( t ) ) d W ( t ) d\varphi(t)=-\varphi(t)h^\top(t,Z(t),Y(t))D^{-1/2}(t,Y(t))dW(t) dφ(t)=φ(t)h(t,Z(t),Y(t))D1/2(t,Y(t))dW(t)
其中 φ ( 0 ) = 1 \varphi(0)=1 φ(0)=1,“ ⊤ ^\top ” 表示矩阵的转置。由于 h h h 满足线性增长条件,可知 φ ( t ) \varphi(t) φ(t) 是一个上鞅且满足 E [ φ ( t ) ] = 1 E[\varphi(t)]=1 E[φ(t)]=1。新的概率测度 P ~ \mathbb{\tilde{P}} P~ 的定义如下:
d P ~ : = φ ( t ) d P  on  F t , 0 ≤ t ≤ T d\mathbb{\tilde{P}}:=\varphi(t)d\mathbb{P}\text{ on }\mathcal{F}_t, 0\le t\le T dP~:=φ(t)dP on Ft,0tT
根据 Girsanov 定理,存在一个在 P ~ \mathbb{\tilde{P}} P~ 下的布朗运动 W ~ \tilde{W} W~,有
d Y ( t ) = σ ( t , Y ( t ) ) d W ~ ( t ) d Z ( t ) = ( b ( t , Z ( t ) , Y ( t ) ) − α ⊤ ( t , Z ( t ) , Y ( t ) ) h ⊤ ( t , Z ( t ) , Y ( t ) ) D − 1 / 2 ( t ) ) d t + α ⊤ ( t , Z ( t ) , Y ( t ) ) D − 1 / 2 ( t ) d Y ( t ) + γ ( t , Z ( t ) , Y ( t ) ) d W ⊥ ( t ) dY(t)=\sigma(t,Y(t))d\tilde{W}(t)\\ dZ(t)=\left(b(t,Z(t),Y(t))-\alpha^\top(t,Z(t),Y(t))h^\top(t,Z(t),Y(t))D^{-1/2}(t)\right)dt+\alpha^\top(t,Z(t),Y(t))D^{-1/2}(t)dY(t)+\gamma(t,Z(t),Y(t))dW^\bot(t) dY(t)=σ(t,Y(t))dW~(t)dZ(t)=(b(t,Z(t),Y(t))α(t,Z(t),Y(t))h(t,Z(t),Y(t))D1/2(t))dt+α(t,Z(t),Y(t))D1/2(t)dY(t)+γ(t,Z(t),Y(t))dW(t)
定义过程:
d Y ~ ( t ) : = D − 1 / 2 ( t ) d Y ( t ) d\tilde{Y}(t):=D^{-1/2}(t)dY(t) dY~(t):=D1/2(t)dY(t)
d Y ~ d\tilde{Y} dY~ W ⊥ ( t ) W^\bot(t) W(t) 是两个独立的 BM。此外,由于 D ( t ) D(t) D(t) 是可逆的, F t Y = F t Y ~ \mathcal{F}_t^Y=\mathcal{F}_t^{\tilde{Y}} FtY=FtY~。定义
请添加图片描述
这里 K ( t ) K(t) K(t) 是鞅。假设存在过程 Φ ( t , z ) = Φ ( t , z , w ) , ( t , z , w ) ∈ [ 0 , T ] × R d × Ω \Phi(t,z)=\Phi(t,z,w),(t,z,w)\in[0,T]\times\mathbb{R}^d\times\Omega Φ(t,z)=Φ(t,z,w),(t,z,w)[0,T]×Rd×Ω,有
E ~ [ f ( Z ( t ) ) K ( t ) ∣ F t Y ] = ∫ R d f ( z ) Φ ( t , z ) d z , f ∈ C 0 ∞ ( R d ) \tilde{\mathbb{E}}\left[f(Z(t))K(t)|\mathcal{F}_t^Y\right]=\int_{\mathbb{R}^d}f(z)\Phi(t,z)dz,\quad f\in C_0^\infty(\mathbb{R}^d) E~[f(Z(t))K(t)FtY]=Rdf(z)Φ(t,z)dz,fC0(Rd)
其中 C 0 ∞ ( R d ) C_0^\infty(\mathbb{R}^d) C0(Rd) 表示具有紧支持的 R d \mathbb{R}^d Rd 上的无限可微函数集, E ~ \tilde{\mathbb{E}} E~ 表示关于 P ~ \tilde{\mathbb{P}} P~ 的期望值,过程 Φ ( t , z ) \Phi(t,z) Φ(t,z) Z ( t ) Z(t) Z(t) 的非标准化条件密度。
L Z L_Z LZ 为关于 Z ( t ) Z(t) Z(t) 的二阶椭圆算子,定义如下:
L Z : = ∑ i g i ( s , z , y ) ∂ ∂ z i + 1 2 ∑ i , j ( α α ⊤ + γ γ ⊤ ) i , j ( s , y , z ) ∂ 2 ∂ z i ∂ z j L_Z:=\sum_ig_i(s,z,y)\frac{\partial}{\partial z_i}+\frac{1}{2}\sum_{i,j}(\alpha\alpha^\top+\gamma\gamma^\top)_{i,j}(s,y,z)\frac{\partial^2}{\partial z_i\partial z_j} LZ:=igi(s,z,y)zi+21i,j(αα+γγ)i,j(s,y,z)zizj2
L ∗ L^* L 表示其形式伴随。将伊藤公式应用到 K ( t ) f ( Z ( t ) ) K(t)f(Z(t)) K(t)f(Z(t)) 上,取期望并使用分部积分,发现过程 Φ ( t , z ) \Phi(t,z) Φ(t,z) 满足以下 Zakai 方程
d Φ ( t , z ) = L ∗ Φ ( t , z ) d t + M ∗ Φ ( t , z ) d Y ~ ( t ) d\Phi(t,z)=L^*\Phi(t,z)dt+M^*\Phi(t,z)d\tilde{Y}(t) dΦ(t,z)=LΦ(t,z)dt+MΦ(t,z)dY~(t)
其中 Φ ( 0 , z ) = ξ ( z ) \Phi(0,z)=\xi(z) Φ(0,z)=ξ(z) Z ( 0 ) Z(0) Z(0) 的概率密度,且
M ∗ Φ ( t , z ) = h ( t , z , y ) − ∑ ∂ ∂ z i ( α i ( t , z , y ) ⋅ Φ ( t , z ) ) M^*\Phi(t,z)=h(t,z,y)-\sum\frac{\partial}{\partial z_i}(\alpha_i(t,z,y)\cdot\Phi(t,z)) MΦ(t,z)=h(t,z,y)zi(αi(t,z,y)Φ(t,z))
假设初始条件 ξ ( z ) \xi(z) ξ(z) 是适应的,平方可积且足够光滑,可以在 Assumption A2 下证明 SPDE ( d Φ ( t , z ) d\Phi(t,z) dΦ(t,z)) 在适当的 Sobolev 空间中具有唯一的 F Y \mathcal{F}^Y FY 适应强解。
假设资产过程 X ( t ) X(t) X(t) 满足如下 SDE
d X ( t ) = h ~ ( t , Z ( t ) , X ( t ) , u ( t ) ) d t + σ ~ ( t , X ( t ) , u ( t ) ) d W ( t ) dX(t)=\tilde{h}(t,Z(t),X(t),u(t))dt+\tilde{\sigma}(t,X(t),u(t))dW(t) dX(t)=h~(t,Z(t),X(t),u(t))dt+σ~(t,X(t),u(t))dW(t)
其中 X ( 0 ) = x X(0)=x X(0)=x,系数 h ~ \tilde{h} h~ σ ~ \tilde{\sigma} σ~ 使上述 SDE 有唯一强解。
再次应用 Girsanov 定理,可以得到
请添加图片描述
结合 V Π ( x ) V_\Pi(x) VΠ(x) E ~ [ f ( Z ( t ) ) K ( t ) ∣ F t Y ] \tilde{\mathbb{E}}\left[f(Z(t))K(t)|\mathcal{F}_t^Y\right] E~[f(Z(t))K(t)FtY],我们可以将 SDE 的部分观测控制问题转化为SPDE的完全观测控制问题
请添加图片描述
其中 S ~ ( t ) = exp ⁡ { Y ( t ) } \tilde{S}(t)=\exp\{Y(t)\} S~(t)=exp{Y(t)} 由下式给出
d S ~ ( t ) = S ~ ( t ) ( 1 2 D ( t ) d t + D 1 / 2 ( t ) d Y ~ ( t ) ) d\tilde{S}(t)=\tilde{S}(t)\left(\frac{1}{2}D(t)dt+D^{1/2}(t)d\tilde{Y}(t)\right) dS~(t)=S~(t)(21D(t)dt+D1/2(t)dY~(t))
在模型中, Y = log ⁡ S ~ , d Y ~ ( t ) = D − 1 / 2 ( t ) d Y ( t ) = 1 σ d S ( t ) Y=\log\tilde{S},d\tilde{Y}(t)=D^{-1/2}(t)dY(t)=\frac{1}{\sigma}dS(t) Y=logS~,dY~(t)=D1/2(t)dY(t)=σ1dS(t),因此
请添加图片描述
其中 Y ~ ( t ) \tilde{Y}(t) Y~(t) 是标准 BM。
请添加图片描述
上述关于 S S S X X X 的 SDE 中,其系数依附于参数。SPDE 的漂移系数取决于线性微分算子,而扩散系数依附于 SPDE 的一阶导数。

因子模型的随机最大值原理

本节考虑一个上述的一般形式。状态过程由三要素 ( Y ( t ) , X ( t ) , Φ ( t , z ) ) (Y(t),X(t),\Phi(t,z)) (Y(t),X(t),Φ(t,z)) 定义,其动力学分别由以下公式给出:
请添加图片描述
其中 L L L 是作用于 x x x 的线性微分算子; b 1 , b 2 , b 3 , σ 1 , σ 2 , σ 3 b1,b2,b3,\sigma1,\sigma2,\sigma3 b1,b2,b3,σ1,σ2,σ3 是满足上式存在唯一性强解条件的函数。定义
请添加图片描述
请添加图片描述

  • 充分随机极大值原理

定义 Hamiltonian
请添加图片描述
其中 ϕ ′ = ∂ ϕ ∂ z \phi^{'}=\frac{\partial\phi}{\partial z} ϕ=zϕ。假设 H H H 对于变量 x , y , ϕ , ϕ ′ x,y,\phi,\phi^{'} x,y,ϕ,ϕ 是可微的。 u ∈ U a d u\in\mathcal{U}_{ad} uUad,考虑一种满足未知变量 p 1 ( t , z ) , q 1 ( t , z ) , p 2 ( t , z ) , q 2 ( t , z ) , p 3 ( t , z ) , q 3 ( t , z ) p_1(t,z),q_1(t,z),p_2(t,z),q_2(t,z),p_3(t,z),q_3(t,z) p1(t,z),q1(t,z),p2(t,z),q2(t,z),p3(t,z),q3(t,z) 中的后向随机(偏)微分方程组的伴随过程
请添加图片描述
以下简写形式
g ( z ) = g ( z , X ( T ) , Y ( T ) , Φ ( T , z ) , b ˉ ) H ( t , z ) = H ( t , z , X ( t ) , Y ( t ) , u ( t ) , Φ ( t , z ) , Φ ′ ( t , z ) , p 1 ( t , z ) , q 1 ( t , z ) , p 2 ( t , z ) , q 2 ( t , z ) , p 3 ( t , z ) , q 3 ( t , z ) ) g(z)=g(z,X(T),Y(T),\Phi(T,z),\bar{b})\\ H(t,z)=H(t,z,X(t),Y(t),u(t),\Phi(t,z),\Phi^{'}(t,z),p_1(t,z),q_1(t,z),p_2(t,z),q_2(t,z),p_3(t,z),q_3(t,z)) g(z)=g(z,X(T),Y(T),Φ(T,z),bˉ)H(t,z)=H(t,z,X(t),Y(t),u(t),Φ(t,z),Φ(t,z),p1(t,z),q1(t,z),p2(t,z),q2(t,z),p3(t,z),q3(t,z))
Theorem 3.3 (充分随机极大值原理) u ^ ∈ U a d \hat{u}\in\mathcal{U}_{ad} u^Uad,上述相应的解决方案为 Y ^ ( t ) , X ^ ( t ) , Φ ^ ( t , z ) , ( p 1 ^ ( t , z ) , q 1 ^ ( t , z ) ) ; ( p 2 ^ ( t , z ) , q 2 ^ ( t , z ) ) ; ( p 3 ^ ( t , z ) , q 3 ^ ( t , z ) ) \hat{Y}(t),\hat{X}(t),\hat{\Phi}(t,z),(\hat{p_1}(t,z),\hat{q_1}(t,z));(\hat{p_2}(t,z),\hat{q_2}(t,z));(\hat{p_3}(t,z),\hat{q_3}(t,z)) Y^(t),X^(t),Φ^(t,z),(p1^(t,z),q1^(t,z));(p2^(t,z),q2^(t,z));(p3^(t,z),q3^(t,z)),假设下列情况成立
(1)函数 ( x , y , ϕ ) ↦ g ( z , x , y , ϕ ) (x,y,\phi)\mapsto g(z,x,y,\phi) (x,y,ϕ)g(z,x,y,ϕ) 是凹函数
(2)以下函数存在,且为凹函数
h ~ ( x , y , ϕ , ϕ ′ ) = sup ⁡ u ∈ U a d H ( t , z , x , y , u , ϕ , ϕ ′ , p 1 ^ ( t , z ) , q 1 ^ ( t , z ) , p 2 ^ ( t , z ) , q 2 ^ ( t , z ) , p 3 ^ ( t , z ) , q 3 ^ ( t , z ) ) \tilde{h}(x,y,\phi,\phi^{'})=\sup_{u\in\mathcal{U}_{ad}}H(t,z,x,y,u,\phi,\phi^{'},\hat{p_1}(t,z),\hat{q_1}(t,z),\hat{p_2}(t,z),\hat{q_2}(t,z),\hat{p_3}(t,z),\hat{q_3}(t,z)) h~(x,y,ϕ,ϕ)=uUadsupH(t,z,x,y,u,ϕ,ϕ,p1^(t,z),q1^(t,z),p2^(t,z),q2^(t,z),p3^(t,z),q3^(t,z))
(3)(最大条件)
H ( t , z , X ^ ( t ) , Y ^ ( t ) , u ^ ( t ) , Φ ^ ( t ) , Φ ^ ′ ( t ) , p 1 ^ ( t , z ) , q 1 ^ ( t , z ) , p 2 ^ ( t , z ) , q 2 ^ ( t , z ) , p 3 ^ ( t , z ) , q 3 ^ ( t , z ) ) = sup ⁡ u ∈ U a d H ( t , z , X ^ ( t ) , Y ^ ( t ) , v , Φ ^ ( t ) , Φ ^ ′ ( t ) , p 1 ^ ( t , z ) , q 1 ^ ( t , z ) , p 2 ^ ( t , z ) , q 2 ^ ( t , z ) , p 3 ^ ( t , z ) , q 3 ^ ( t , z ) ) H(t,z,\hat{X}(t),\hat{Y}(t),\hat{u}(t),\hat{\Phi}(t),\hat{\Phi}^{'}(t),\hat{p_1}(t,z),\hat{q_1}(t,z),\hat{p_2}(t,z),\hat{q_2}(t,z),\hat{p_3}(t,z),\hat{q_3}(t,z))\\ =\sup_{u\in\mathcal{U}_{ad}}H(t,z,\hat{X}(t),\hat{Y}(t),v,\hat{\Phi}(t),\hat{\Phi}^{'}(t),\hat{p_1}(t,z),\hat{q_1}(t,z),\hat{p_2}(t,z),\hat{q_2}(t,z),\hat{p_3}(t,z),\hat{q_3}(t,z)) H(t,z,X^(t),Y^(t),u^(t),Φ^(t),Φ^(t),p1^(t,z),q1^(t,z),p2^(t,z),q2^(t,z),p3^(t,z),q3^(t,z))=uUadsupH(t,z,X^(t),Y^(t),v,Φ^(t),Φ^(t),p1^(t,z),q1^(t,z),p2^(t,z),q2^(t,z),p3^(t,z),q3^(t,z))
(4)假设下列积分条件成立
请添加图片描述
u ^ ( t ) \hat{u}(t) u^(t) 是上述控制问题的一个最优控制。

  • 等效随机极大值原理

实际应用中,凹度假设有时无法满足。 在这种情况下,可能需要等效的最大值原理来克服这一困难。 为了推导出这样的最大值原理,我们需要以下附加条件
(C1)函数 b 1 , b 2 , b 3 , σ 1 , σ 2 , σ 3 , f , g b_1,b_2,b_3,\sigma_1,\sigma_2,\sigma_3,f,g b1,b2,b3,σ1,σ2,σ3,f,g 是关于其参数 x , y , Φ , u x,y,\Phi,u x,y,Φ,u C 3 C^3 C3
(C2)对于所有 0 < t ≤ r < T 0<t\le r<T 0<tr<T,所有有界 F t \mathcal{F}_t Ft-可测量随机变量 α \alpha α,以及所有有界确定性函数 ζ \zeta ζ,使 β ( s , z ) \beta(s,z) β(s,z) 属于 U a d \mathcal{U}_{ad} Uad
β ( s , z ) = α ( ω ) X [ t , r ] ( s ) ζ ( z ) , 0 ≤ s ≤ T \beta(s,z)=\alpha(\omega)_{\mathcal{X}[t,r]}(s)\zeta(z),\quad0\le s\le T β(s,z)=α(ω)X[t,r](s)ζ(z),0sT
(C3)对于所有 u ∈ U a d u\in\mathcal{U}_{ad} uUad β ∈ U a d \beta\in\mathcal{U}_{ad} βUad,存在 r > 0 r>0 r>0 使 u + δ β ∈ U a d u+\delta\beta\in\mathcal{U}_{ad} u+δβUad,其中 δ ∈ ( − r , r ) \delta\in(-r,r) δ(r,r)
请添加图片描述
λ × P × μ \lambda\times\mathbb{P}\times\mu λ×P×μ-一致可积;
请添加图片描述
P × μ \mathbb{P}\times\mu P×μ-一致可积。
(C4)对于所有 u , β ∈ U a d u,\beta\in\mathcal{U}_{ad} u,βUad β \beta β 有界,以下过程存在
请添加图片描述

请添加图片描述
此外,以上过程满足
请添加图片描述
Theorem 3.4(等效随机最大值原理)保留条件(C1)-(C4), u ∈ U a d u\in\mathcal{U}_{ad} uUad,上述相应的解决方案为 X ( t ) , Y ( t ) , Φ ( t , z ) , ( p 1 ( t , z ) , q 1 ( t , z ) ) ; ( p 2 ( t , z ) , q 2 ( t , z ) ) ; ( p 3 ( t , z ) , q 3 ( t , z ) ) , Γ 1 ( t ) , Γ 2 ( t ) , Γ 3 ( t , z ) X(t),Y(t),\Phi(t,z),(p_1(t,z),q_1(t,z));(p_2(t,z),q_2(t,z));(p_3(t,z),q_3(t,z)),\Gamma_1(t),\Gamma_2(t),\Gamma_3(t,z) X(t),Y(t),Φ(t,z),(p1(t,z),q1(t,z));(p2(t,z),q2(t,z));(p3(t,z),q3(t,z)),Γ1(t),Γ2(t),Γ3(t,z)。在保证伊藤乘法规则的可积性条件下,以下是等价的:
请添加图片描述
(不满足凹性假设的系统为区域切换系统)

在商品套期保值和定价因子模型中的应用

考虑以下部分观察市场:
请添加图片描述
u ( t ) u(t) u(t) 是一个投资组合,表示在 t t t 时投资于风险资产的资产金额。资产过程的动力学由下式给出:
d X ( t ) = ( r ( t ) X ( t ) − Z ( t ) u ( t ) d t + σ u ( t ) d W 1 ( t ) , X ( 0 ) = x dX(t)=(r(t)X(t)-Z(t)u(t)dt+\sigma u(t)dW^1(t),\quad X(0)=x dX(t)=(r(t)X(t)Z(t)u(t)dt+σu(t)dW1(t),X(0)=x
投资者的目的是找到 u ^ ∈ U a d \hat{u}\in\mathcal{U}_{ad} u^Uad
sup ⁡ u ∈ U a d E [ U ( X x , u ( T ) ) ] = E [ U ( X x , u ^ ( T ) ) ] sup ⁡ u ∈ U a d E [ U ( X x − p , u ( T ) + Π ( S ~ ( T ) , B ) ) ] = E [ U ( X x − p , u ^ ( T ) + Π ( S ~ ( T ) , B ) ) ] \sup_{u\in\mathcal{U}_{ad}}\mathbb{E}\left[U\left(X^{x,u}(T)\right)\right]=\mathbb{E}\left[U\left(X^{x,\hat{u}}(T)\right)\right]\\ \sup_{u\in\mathcal{U}_{ad}}\mathbb{E}\left[U\left(X^{x-p,u}(T)+\Pi(\tilde{S}(T),B)\right)\right]=\mathbb{E}\left[U\left(X^{x-p,\hat{u}}(T)+\Pi(\tilde{S}(T),B)\right)\right] uUadsupE[U(Xx,u(T))]=E[U(Xx,u^(T))]uUadsupE[U(Xxp,u(T)+Π(S~(T),B))]=E[U(Xxp,u^(T)+Π(S~(T),B))]
其中 U ( x ) = − e − λ x U(x)=-e^{-\lambda x} U(x)=eλx 是指数效用, Π \Pi Π 是对商品价格的未定权益, B B B 是基本风险。上式表示无或有债权的性能泛函(分别带有索赔)。
以上已表明 SDE 的部分观测控制问题可以转化为 SPDE 的完全观测控制问题。 在这种情况下,用给定 F t Y \mathcal{F}^Y_t FtY 的非标准化条件密度 Φ ( t , z ) \Phi(t,z) Φ(t,z) 替换过程 Z ( t ) Z(t) Z(t) X , S , Φ X,S,\Phi X,S,Φ 的动力学方程由下式给出
请添加图片描述
其中 ′ 表示关于 z z z 的导数。
又因为投资者的目的是找到 u ^ ∈ U a d \hat{u}\in\mathcal{U}_{ad} u^Uad 使
请添加图片描述
性能泛函 J ( u ) J(u) J(u) 将用于解决优化问题 J ( u ^ ) J(\hat{u}) J(u^) ,并且无要求的效用最大化的解决方案将通过设置 Π = 0 = p b \Pi=0=p^b Π=0=pb 进行。 上述 SED 表明只有过程 X X X 依赖于控制 u u u。 此外,系数满足 SED 系统强解存在唯一性的条件。应用 Theorem 3.3 来解决上述控制问题。

Hamiltonian 定义如下
请添加图片描述
u ^ \hat{u} u^ 为最优控制候选,设 X ^ , S ~ ^ , Φ ^ \hat{X},\hat{\tilde{S}},\hat{\Phi} X^,S~^,Φ^为相关的最优过程,对应于伴随方程的解 p ^ ( t , z ) = ( p 1 ^ ( t , z ) , p 2 ^ ( t , z ) , p 3 ^ ( t , z ) ) , q ^ ( t , z ) = ( q 1 ^ ( t , z ) , q 2 ^ ( t , z ) , q 3 ^ ( t , z ) ) \hat{p}(t,z)=(\hat{p_1}(t,z),\hat{p_2}(t,z),\hat{p_3}(t,z)),\hat{q}(t,z)=(\hat{q_1}(t,z),\hat{q_2}(t,z),\hat{q_3}(t,z)) p^(t,z)=(p1^(t,z),p2^(t,z),p3^(t,z)),q^(t,z)=(q1^(t,z),q2^(t,z),q3^(t,z))
由于 U U U Π \Pi Π 是凹的,而 H H H 在其参数上是线性的,因此满足 Theorem 3.3 的第一个和第二个条件。 接下来利用最优性的一阶条件来寻找最优控制。
利用最优性的一阶条件,得到
( r − 1 2 σ 2 ) p ^ 2 ( t , z ) = σ q ^ 2 ( t , z ) \left(r-\frac{1}{2}\sigma^2\right)\hat{p}_2(t,z)=\sigma\hat{q}_2(t,z) (r21σ2)p^2(t,z)=σq^2(t,z)
由于 ( p ^ , q ^ ) = ( p 2 , q 2 ) (\hat{p},\hat{q}) = (p_2,q_2) (p^,q^)=(p2,q2) 所满足的 BSDE 是线性的,我们尝试以下形式的解
p ^ 2 ( t , z ) = − e − λ ( X ^ ( t ) e ∫ t T r ( s ) d s + Ψ ( t , S ~ ^ ( t ) , Φ ( t , z ) ) ) \hat{p}_2(t,z)=-e^{-\lambda\left(\hat{X}(t)e\int_t^Tr(s)ds+\Psi(t,\hat{\tilde{S}}(t),\Phi(t,z))\right)} p^2(t,z)=eλ(X^(t)etTr(s)ds+Ψ(t,S~^(t),Φ(t,z)))
其中 Ψ \Psi Ψ 是光滑函数,简单起见,另 S ~ ^ = S , X ~ ( t ) = e − λ ( X ^ ( t ) e ∫ t T r ( s ) d s ) \hat{\tilde{S}}=S,\tilde{X}(t)=e^{-\lambda\left(\hat{X}(t)e\int_t^Tr(s)ds\right)} S~^=S,X~(t)=eλ(X^(t)etTr(s)ds),然后使用伊藤公式得到
请添加图片描述
另一方面,将伊藤公式应用于二维过程 ( S , Φ ) (S,\Phi) (S,Φ),得到
请添加图片描述
通过上述两个公式,利用乘法法则得到
请添加图片描述
接下来得到
请添加图片描述
比较上式和前面定义的 d p 2 ( t , z ) dp_2(t,z) dp2(t,z),我们得出 Ψ \Psi Ψ 必须满足以下微分方程:
请添加图片描述
q 2 ( t , z ) q_2(t,z) q2(t,z) 代入到 ( r − 1 2 σ 2 ) p ^ 2 ( t , z ) = σ q ^ 2 ( t , z ) \left(r-\frac{1}{2}\sigma^2\right)\hat{p}_2(t,z)=\sigma\hat{q}_2(t,z) (r21σ2)p^2(t,z)=σq^2(t,z)得到
请添加图片描述
因此,投资的总价值是投资于风险资产的成本和由于部分观察而产生的另一成本。

假设没有索赔,那么
请添加图片描述
假设利率是恒定的。初始值为 x x x 的最终资产可以表示为
请添加图片描述
以及初始值为 x − p b x-p^b xpb 的资产可以表示为
请添加图片描述
由于资产过程是效用最大化问题中唯一依赖于控制的过程,我们对效用无差异价格有以下结果。
Theorem 4.3. 假设利率是恒定的。索赔 Π = Π ( S ~ ( t ) , B ( z ) + b ˉ ) \Pi=\Pi(\tilde{S}(t),B(z)+\bar{b}) Π=Π(S~(t),B(z)+bˉ) 的买方的无差别价格 p b p^b pb 由下式给出:
请添加图片描述

总结

本文给出了部分观测系统最优控制问题的一个充分等价的随机极大值原理。控制系统和观测系统之间的相关噪声的存在导致了一个退化的Zakai方程,因此需要关于这类方程唯一强解存在性的结果。基于存在性结果,我们能够给出一个充分且等价的“强”极大值原理。然后将所得结果应用于研究部分观测便利收益模型的套期保值和定价问题。

基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip基于MATLAB实现旅行推销员问题(TSP)的代码+项目说明(课程大作业)+测试数据.zip 【备注】 1、该资源内项目代码百分百可运行,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值