Semantic-NeRF原论文名为《In-Place Scene Labelling and Understanding with Implicit Scene Representation》,首次提出将语义信息加入NeRF,实现了纹理、几何与语义信息的联合隐表征。论文的核心出发点在于证明了三维隐表征自身具备的连续性和多视角一致性使得Semantic-NeRF仅依靠稀疏/带噪声的语义标签,便能获得准确的室内语义标注和理解。论文方法并不复杂,就是在MLP网络上加了一路语义的输出,然后仿照颜色的积分方式对Semantic进行积分,如下图所示