关于Learing Rate(学习率)、Adagrad(自适应选取学习率)

关于学习率

学习率主要用在神经网络的反向传播中,用来调节参数,但学习率的选取很重要,当学习率选取过大时,如下图黄线所示,参数会跳过使损失函数最低的参数,这样有可能使损失变得更大,而选取较小时,网络的训练时间会比较长,迟迟到达不了最低点。所以对于学习率的选取要十分小心。
在这里插入图片描述

为什么要自适应选取学习率

原因主要是:因为我们在训练过程中,我们希望在刚开始的时候,学习率可以大一些,这样可以加速收敛,而越往后,我们希望学习率可以更小一些,因为快接近最低损失点了, 如何学习率还是很大,很容易跳过最低点,所以我们选择自适应选取学习率。在介绍如何自适应选取学习率前,先看一个例子。
假如我们的model使一个二次函数,如下图,我们现在所处的位子是X0点,我们像到达最低点,那么我们的步伐多大最合适呢,可以看到,当我们的步伐等于一次微分/二次微分的时候我们正好可以到达最低点!在这里插入图片描述
所以,为了自适应选择学习率,我们同样可以借鉴上述的方法。因为当model比较复杂时,我们求取二次微分会比较复杂,所以选取函数来代替二次微分,如下图所示:
在这里插入图片描述
这就是自适应选取学习率所采取的概念!

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
首先需要安装必要的库和模块,如pytorch、numpy、matplotlib等。然后按照以下步骤进行Q-Learning优化Unet训练的学习率: 1. 定义Q-Learning所需的参数,如学习率、折扣因子、epsilon值等。 ```python learning_rate = 0.1 # 学习率 gamma = 0.9 # 折扣因子 epsilon = 0.3 # epsilon值,用于探索 ``` 2. 定义Q表,Q表的行表示当前状态,列表示当前动作。 ```python # 定义Q表 q_table = np.zeros((num_states, num_actions)) ``` 3. 定义状态转换函数,用于将当前状态转换为状态编号。 ```python # 定义状态转换函数 def get_state(observation): state = observation.flatten() state = np.array_str(state) return state ``` 4. 定义动作选择函数,用于根据当前状态和Q表选择动作。 ```python # 定义动作选择函数 def choose_action(state, q_table): if np.random.uniform() < epsilon: # 探索 action = np.random.choice(num_actions) else: # 利用 state_action = q_table[state, :] action = np.argmax(state_action) return action ``` 5. 定义学习函数,用于更新Q表。 ```python # 定义学习函数 def learn(state, action, reward, next_state, q_table): q_predict = q_table[state, action] q_target = reward + gamma * np.max(q_table[next_state, :]) q_table[state, action] += learning_rate * (q_target - q_predict) ``` 6. 在训练过程中,每训练一次就更新学习率,并根据当前状态和Q表选择动作。 ```python # 在训练过程中更新学习率 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # 训练过程中选择动作 state = get_state(observation) action = choose_action(state, q_table) ``` 7. 在反向传播过程中,根据选择的动作计算奖励,并更新Q表。 ```python # 计算奖励 reward = dice_loss(output, target) # 反向传播 loss.backward() # 更新Q表 next_state = get_state(observation) learn(state, action, reward, next_state, q_table) ``` 8. 最后,根据训练结果选择最优的学习率进行模型训练。 ```python # 根据训练结果选择最优的学习率 best_learning_rate = np.argmax(q_table, axis=1) best_learning_rate = np.unique(best_learning_rate) learning_rate = best_learning_rate[0] # 使用最优学习率进行模型训练 optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) ``` 以上就是利用Q-Learning优化Unet训练的学习率的代码实现过程。需要注意的是,Q-Learning只是一种优化方法,它并不能保证在所有情况下都能取得最优结果,因此在实际应用中需要综合考虑各种因素,选择最合适的优化方法和参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值