北科大《Acta Materialia》:重要突破!一种新的Hall-Petch关系。

北京科技大学的研究团队利用机器学习和数据挖掘,揭示了影响多晶金属屈服强度的新Hall-Petch模型,涉及关键物理量如价电子距离、内聚能等,实现了无需实验拟合的高精度预测。该模型在多种金属材料上展现出高适用性,为金属材料性能预测提供理论依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

专栏文章始于:2022-07-31

材料领域中的机器学习研究工作——北科大《Acta Materialia》:重要突破!一种新的Hall-Petch关系。


前言

文献获取地址:https://www.sciencedirect.com/science/article/pii/S1359645422002543?via%3Dihub
通讯作者:付华栋教授和谢建新院士
在这里插入图片描述


一、文章工作的关键点聚焦

金属材料的屈服强度是一种具有重要科学和工程意义的基本力学性能。阐明屈服强度的内在因素和物理机制,实现屈服强度的准确计算和预测,一直是金属材料领域的核心科学问题和重大挑战。近七十年来,σ0和ky在Hall-Patch关系(后称H-P)中的计算和物理意义一直利用晶体结构和位错运动等物理理论所修正和解释。如有部分研究人员考虑位错源与晶界之间距离、不同滑移体系的影响来修正惠普关系。因此,诞生了许多经典的理论,如Ashby几何必须位错理论、Conrad滑移距离模型、Petch和Meakin位错叠加理论、Conrad滑移距离模型。这些理论加深了对多晶体金属材料在屈服阶段的认识,提高了对金属材料屈服强度的预测精度。然而,H-P关系仍有两个不足之处。首先,当晶粒较粗(毫米级以上)或较细(纳米级)时,线性关系存在明显偏差。其次,影响σ0和ky的内在因素,以及物理机制有待进一步明确。
机器学习可基于一系列数据直接进行回归建模,揭示材料内部复杂的物理关系。北京科技大学的研究人员运用数据挖掘的策略,探究了H-P关系的物理本质,揭示了影响多晶金属屈服强度的关键物理量及其机制。建立屈服强度、关键物理量和晶粒尺寸之间的新的Hall-Petch模型,以计算代替实验拟合的方法直接预测多晶金属的屈服强度,同时实现金属成分之间跨尺度相关计算的新方法。
经如图1所示的数据收集、关键物理量筛选、回归建模和模型分析过程。数据集来自以往的研究中。对屈服强度影响的关键物理量进行递归特征筛选。结合遗传回归方法,建立反映关键物理量、晶粒尺寸和屈服强度之间关系的H-P模型。最后对模型的精度和泛化能力分析。
图一所示:
在这里插入图片描述

根据H-P关系计算20种纯金属(330个数据点)的ky和σ0。与新H-P模型计算得到的H-P关系和传统H-P关系的拟合结果进行比较,如图2所示。
图二所示:
在这里插入图片描述
可以看出,计算结果与实验结果的决定系数R2分别达到0.94和0.97,具有较好的相关性。图3为与其他模型对比,仍具有较高的先进性。
如图3所示:
在这里插入图片描述
图4利用其他多种纳米晶金属、固溶单相合金和金属间化合物的泛化能力测试,表明模型对新数据也具有较高的适用性。
如图4所示:
在这里插入图片描述
该研究工作基于机器学习筛选出影响金属多晶屈服强度的五个关键因素,即价电子距离(S)、内聚能(W)、线性热膨胀系数(lt)、晶界界面能(γ)、杨氏模量(E),揭示了影响多晶金属屈服强度的机理。新型H-P模型预测精度高,不存在需要通过实验测试得到拟合常数的实验拟合常数项,可以通过关键物理量的计算直接预测多晶金属的屈服强度。建立了金属基本物理参数与工程应用性能(屈服强度)的相关模型,为金属材料成分、晶粒结构和力学性能之间的跨尺度建模和计算提供了理论方法。

二、文章分析及点评

1.文章的脉络分析

1.1研究背景:金属材料的屈服强度是一种具有重要科学和工程意义的基本力学性能。阐明屈服强度的内在因素和物理机制,实现屈服强度的准确计算和预测,一直是金属材料领域的核心科学问题和重大挑战。(点明该研究非常有意义)
1.2研究现状/进展:近七十年来,一直利用晶体结构和位错运动等物理理论去修正和解释σ0和ky在Hall-Patch关系(后称H-P)中的计算和物理意义。期间有很多理论提出,这些理论加深了对多晶体金属材料在屈服阶段的认识,提高了对金属材料屈服强度的预测精度。
1.3存在问题:然而,H-P关系仍有两个不足之处。首先,当晶粒较粗(毫米级以上)或较细(纳米级)时,线性关系存在明显偏差。其次,影响σ0和ky的内在因素,以及物理机制有待进一步明确。(此处是该文章的一个关键落脚点,指出材料领域的一个基础未解决的共识问题,研究点升华了机器学习方法)
1.4研究结果:该研究工作基于机器学习筛选出影响金属多晶屈服强度的五个关键因素,即价电子距离(S)、内聚能(W)、线性热膨胀系数(lt)、晶界界面能(γ)、杨氏模量(E),揭示了影响多晶金属屈服强度的机理。新型H-P模型预测精度高,不存在需要通过实验测试得到拟合常数的实验拟合常数项,可以通过关键物理量的计算直接预测多晶金属的屈服强度。建立了金属基本物理参数与工程应用性能(屈服强度)的相关模型,为金属材料成分、晶粒结构和力学性能之间的跨尺度建模和计算提供了理论方法。

2.工作点评及借鉴思考

谢老师们的机器学习工作模式变了,从以前的技术流(对抗神经网络)转向聚焦于利用机器学习手段尝试解决分析材料里面的切实问题上。这个才是交叉学科的初心,就像武侠里面的返璞归真。
机器学习只是个工具,我们要用它来解决材料中的基本科学问题。
关键点:如何才能快速抓住自己领域科学问题的七寸呢?(除了文献积累,向老师们请教,还有那些需要注意的!)——后面待体系建立再来回答。


总结

不管是机器学习,将来或者其他手段,这些终究是一门技术,我们的聚焦点还是得落实在研究领域的问题上,聚焦领域的核心问题。计算方法是术,挖掘研究问题是道。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值