信息安全数学基础-算术基本定理 2021-09-19

算术基本定理

1. 素数及其判定

定义(素数)

n ≠ 0,±1,如果除了±1,±n之外没有其他的因子,则n叫做素数

否则n叫做合数

通常来说,素数总是正整数

  • 任意大于1的正整数a,a的最小约数q(q>1)是素数
  • a至少有一个质因数

判定素数的方法

定理

设 整 数 a ≥ 2 是 合 数 , p 是 它 的 最 小 正 约 数 , 则 p < a . 即 对 所 有 素 数 p ≤ a , p 不 整 除 a , 那 么 a 是 素 数 . 设整数a\geq 2是合数,p是它的最小正约数,则p<\sqrt{a}. \\即对所有素数p\leq \sqrt{a},p不整除a,那么a是素数. a2pp<a .pa paa.

证明

由 于 p ∣ a , 设 a = p a 1 , 显 然 有 a 1 ≥ p , 从 而 a ≥ p 2 , 即 p ≤ a 由于p|a,设a=pa_1,显然有a_1\geq p,从而a\geq p^2,即p\leq \sqrt{a} paa=pa1,a1pap2pa

  • 思路就是顺着定理(前面的一条)的叙述证明
  • 埃拉托色尼素数筛选法:去掉 2 2 2 n \sqrt{n} n 中所有素数的倍数,剩下的就都是素数了。

素数的个数

定理

素 数 有 无 穷 多 个 素数有无穷多个

证明(尝试自证)

( 反 证 法 ) 假 设 素 数 个 数 有 限 , 设 为 r 个 , 分 别 表 示 为 : p 1 , p 2 , . . . p r 则 对 于 数 字 n = 1 + p 1 p 2 . . . p r , 按 照 假 设 , n 是 合 数 , 则 存 在 一 个 素 数 p i , 使 得 : p i ∣ 1 + p 1 p 2 . . . p r 又 显 然 p i ∣ p 1 . . . p i − 1 p i p i + 1 . . . p r , 所 以 p i ∣ [ ( 1 + p 1 p 2 . . . p r ) − p 1 . . . p i − 1 p i p i + 1 . . . p r ] = 1 , 即 p i ∣ 1 又 因 为 , 对 于 i = 1 , . . . , r , 有 p i ≥ 2 ( 素 数 的 定 义 ) 因 此 p i 不 整 除 1 , 推 出 矛 盾 , 因 此 假 设 不 成 立 , 从 而 素 数 有 无 限 多 个 . (反证法)假设素数个数有限,设为r个,分别表示为:p_1,p_2,...p_r \\则对于数字n=1+p_1p_2...p_r ,按照假设,n是合数,则存在一个素数p_i,使得: \\p_i|1+p_1p_2...p_r \\又显然p_i|p_1...p_{i-1}p_ip_{i+1}...p_r, \\所以p_i|[(1+p_1p_2...p_r)-p_1...p_{i-1}p_ip_{i+1}...p_r]=1, \\即p_i|1 \\又因为,对于i= 1,...,r,有p_i\geq 2(素数的定义) \\因此p_i不整除1,推出矛盾,因此假设不成立,从而素数有无限多个. rp1,p2,...prn=1+p1p2...prnpi使pi1+p1p2...prpip1...pi1pipi+1...pr,pi[(1+p1p2...pr)p1...pi1pipi+1...pr]=1,pi1i=1,...,r,pi2()pi1,.

素数定理

定义

函数 π ( n ) \pi (n) π(n)表示不超过n的素数个数,其中 n n n是正整数

定理(素数定理)

lim ⁡ x → + ∞ π ( n ) n l n ( n ) = 1 \lim_{x→+\infty}\frac{\pi (n)}{\frac{n}{ln(n)}}=1 x+limln(n)nπ(n)=1

2. 梅森素数和费马素数

引理

设 a , b 是 两 个 正 整 数 , 2 a − 1 被 2 b − 1 除 的 最 小 非 负 余 数 是 2 r − 1 其 中 r 是 a 被 b 除 的 最 小 非 负 余 数 设a,b是两个正整数,2^a-1被2^b-1除的最小非负余数是2^r-1\\其中r是a被b除的最小非负余数 a,b2a12b12r1rab

证明

如 果 a < b , 那 么 r = a , 得 证 。 如 果 a ≥ b , 那 么 a = q b + r ( 带 余 除 法 ) 2 a − 1 = 2 ( q b + r ) − 1 ( 带 入 a ) = 2 r ( ( 2 b ) q − 1 ) + ( 2 r − 1 ) ( 凑 出 2 r − 1 ) = 2 r ( 2 b − 1 ) ( ( 2 b ) q − 1 + . . . + 2 b + 1 ) + 2 r − 1 = q ′ ( 2 b − 1 ) + 2 r − 1 其 中 q ′ = ( ( 2 b ) q − 1 + . . . + 2 b + 1 ) , 结 论 成 立 如果a<b,那么r = a,得证。 \\如果a\geq b,那么 \\ a = qb+r\qquad(带余除法) \\ 2^a-1 = 2^{(qb+r)}-1\qquad(带入a) \\ =2^r({(2^b)}^q-1)+(2^r-1)\qquad(凑出2^r-1) \\ =2^r(2^b-1)((2^b)^{q-1}+...+2^b+1)+2^r-1 \\ =q'(2^b-1)+2^r-1 \\其中q'=((2^b)^{q-1}+...+2^b+1),结论成立 a<br=a,aba=qb+r()2a1=2(qb+r)1(a)=2r((2b)q1)+(2r1)(2r1)=2r(2b1)((2b)q1+...+2b+1)+2r1=q(2b1)+2r1q=((2b)q1+...+2b+1)

推论
  • k ∣ n k|n kn,则 2 k − 1 ∣ 2 n − 1 2^k-1|2^n-1 2k12n1
  • 假定 a > 1 a>1 a>1,m,n是正整数,则 ( a m − 1 , a n − 1 ) = a ( m , n ) − 1 (a^m-1,a^n-1)=a^{(m,n)}-1 (am1,an1)=a(m,n)1

梅森素数

定理

设 n > 1 , 若 2 n − 1 为 素 数 , 则 n 为 素 数 设n>1,若2^n-1为素数,则n为素数 n>12n1n

证明

反 证 法 : 假 设 n 为 合 数 , n 有 素 因 子 k ( 不 代 表 一 定 为 奇 数 , 想 清 楚 ! ! ! ! ! ) , 则 2 k − 1 ∣ 2 n − 1 , 且 2 k − 1 ≥ 2 2 − 1 = 3 则 2 n − 1 为 合 数 , 与 2 n − 1 为 素 数 矛 盾 故 n 为 素 数 反证法:假设n为合数,n有素因子k(不代表一定为奇数,想清楚!!!!!), \\则2^k-1|2^n-1,且2^k-1\geq 2^2-1=3 \\则2^n-1为合数,与2^n-1为素数矛盾 \\故n为素数 nnk(),2k12n1,2k1221=32n12n1n

定义

当 n 是 素 数 时 , 整 数 M n = 2 n − 1 成 为 第 n 个 M e r s e n n e 数 当 M n 是 素 数 时 , M n 成 为 M e r s e n n e 素 数 ( 即 2 p − 1 ) 当n是素数时,整数M_n=2^n-1成为第n个Mersenne数 \\当M_n是素数时,M_n成为Mersenne素数(即2^p-1) nMn=2n1nMersenneMnMnMersenne2p1

  • 梅森数有的是素数,有的是合数

费马素数

定理

若 2 m + 1 为 素 数 , 则 m 一 定 是 2 的 方 幂 ( 即 m = 2 n ) 若2^m+1为素数,则m一定是2的方幂(即m=2^n) 2m+1m2(m=2n)

证明

方 法 1 : 设 m = 1 , 2 m + 1 = 3 为 素 数 , 因 此 m = 2 0 ( 反 证 法 ) 若 m > 1 , 设 奇 素 数 p ∣ m , 则 2 m p + 1 ∣ 2 m + 1 又 2 m p + 1 ≥ 3 则 2 m + 1 为 合 数 , 产 生 矛 盾 故 m 没 有 奇 素 因 子 , 即 m 只 能 由 素 因 子 2 因 此 m = 2 n 方法1:设m=1,2^m+1=3为素数,因此m=2^0 \\(反证法)若m>1,设奇素数p|m,则2^{\frac{m}{p}}+1|2^{m}+1 \\又2^{\frac{m}{p}}+1\geq 3 \\则2^m+1为合数,产生矛盾 \\故m没有奇素因子,即m只能由素因子 2 \\因此m = 2^n 1:m=1,2m+1=3m=20m>1pm2pm+12m+12pm+132m+1mm2m=2n

方 法 2 ( 反 证 法 ) : 若 m 含 有 奇 素 因 子 k , 且 m = n k 则 2 m + 1 = 2 n k + 1 = ( 2 n ) k + 1 = ( 2 n + 1 ) ( ( 2 n ) k − 1 − ( 2 n ) k − 2 + . . . + 1 ) 由 1 < 2 n + 1 < 2 m + 1 ( 由 于 m = n k , 而 k ≥ 2 ( k 是 素 数 ) , 所 以 n 严 格 小 于 m ) 则 2 n + 1 是 2 m + 1 的 一 个 真 因 子 , 从 而 2 m + 1 不 是 素 数 , 矛 盾 方法2(反证法): 若m含有奇素因子k,且m = nk \\则2^m+1=2^{nk}+1={(2^n)}^k+1 \\=(2^n+1)({(2^n)}^{k-1}-{(2^n)}^{k-2}+...+1) \\由1<2^n+1<2^m+1 \\(由于m=nk,而k\geq 2(k是素数),所以n严格小于m) \\则2^n+1是2^m+1的一个真因子,从而2^m+1不是素数,矛盾 2:mkm=nk2m+1=2nk+1=(2n)k+1=(2n+1)((2n)k1(2n)k2+...+1)1<2n+1<2m+1(m=nkk2knm)2n+12m+12m+1

  • 思考:这个定理的逆定理成立吗?(n=0,1,2,3,4时成立)
定义

若 n 为 非 负 整 数 , 则 称 F n = 2 2 n + 1 为 F e r m a t 数 若 F n 为 素 数 , 则 称 F n 为 F e r m a t 素 数 若n为非负整数,则称F_n=2^{2^n}+1为Fermat数 \\若F_n为素数,则称F_n为Fermat素数 nFn=22n+1FermatFnFnFermat

  • F 5 = 4294967297 = 64 × 6700417 F_5=4 294 967 297=64 × 6 700 417 F5=4294967297=64×6700417
  • 费马数和梅森数一样,有的是素数,有的是合数
  • 迄今为止已知的只有前五个(n = 0 , 1 , 2 , 3 , 4)费马数是素数

3. 算术基本定理

素数的基本性质

素数的基本性质

若 p 是 素 数 , a , b 为 整 数 , 且 p ∣ a b , 则 p ∣ a 或 p ∣ b 若p是素数,a,b为整数,且p|ab,则p|a或p|b pa,bpabpapb

证明

若 a 能 被 p 整 除 , 则 定 理 得 证 若 a 不 能 被 p 整 除 , 则 ( a , p ) = 1 , 故 存 在 整 数 u , v , 使 得 a u + p v = 1 故 有 a b u + p b v = b 由 于 p ∣ a b , 故 p ∣ b 若a能被p整除,则定理得证 \\若a不能被p整除,则(a,p)=1,故存在整数u,v,使得 \\au+pv=1 \\故有 \\abu+pbv=b \\由于p|ab,故p|b apap(a,p)=1,u,v使au+pv=1abu+pbv=bpabpb

这种形式的证明,还是老一套的方法:先写出 a u + p v = ( a , p ) au+pv=(a,p) au+pv=(a,p)的形式,再在等式两边同时乘一个式子(通常乘完之后可以推出整除),从而推出结论。

素数的基本性质

设 p 为 素 数 , 若 p ∣ a 1 a 2 . . . a n , 其 中 a 1 a 2 . . . a n 是 n 个 整 数 , 则 p ∣ a 1 , p ∣ a 2 , . . . , p ∣ a n 至 少 有 一 个 成 立 设p为素数,若p|a_1a_2...a_n,其中a_1a_2...a_n是n个整数, \\则p|a_1,p|a_2,...,p|a_n至少有一个成立 ppa1a2...ana1a2...ann,pa1,pa2,...,pan

(就是上面的性质的推广)

证明

用 数 学 归 纳 法 : 当 n = 2 时 , 显 然 成 立 假 设 n − 1 时 命 题 成 立 , 即 若 p ∣ a 1 . . . a n − 1 , 则 p ∣ a 1 , . . . p ∣ a n 至 少 有 一 个 成 立 那 么 对 于 n , 由 于 p ∣ ( a 1 a 2 . . . a n − 1 ) a n , 故 有 p ∣ a 1 . . . a n − 1 或 p ∣ a n 再 由 归 纳 假 设 知 , p ∣ a 1 , p ∣ a 2 , . . . , p ∣ a n 至 少 有 一 个 成 立 用数学归纳法:当n=2时,显然成立 \\假设n-1时命题成立,即若p|a_1...a_{n-1},则p|a_1,...p|a_n至少有一个成立 \\那么对于n,由于p|(a_1a_2...a_{n-1})a_n,故有p|a_1...a_{n-1}或p|a_n \\再由归纳假设知,p|a_1,p|a_2,...,p|a_n至少有一个成立 n=2n1pa1...an1pa1,...pannp(a1a2...an1)an,pa1...an1panpa1,pa2,...,pan

定理(算数基本定理)

每 个 大 于 1 的 正 整 数 n 都 可 以 唯 一 地 表 达 成 素 数 的 乘 积 , 其 中 乘 积 中 的 素 因 子 按 非 降 序 排 列 。 即 n = p 1 p 2 . . . p s ,    p 1 ≤ p 2 ≤ . . . ≤ p s , 其 中 p i 是 素 数 若 n = q 1 q 2 . . . q t ,    q 1 ≤ q 2 ≤ . . . ≤ q t , 其 中 q j 是 素 数 则 s = t ,    p i = q i ,    1 ≤ i ≤ s 每个大于1的正整数n都可以唯一地表达成素数的乘积, \\其中乘积中的素因子按非降序排列。即 \\n=p_1p_2...p_s,\ \ p_1\leq p_2\leq...\leq p_s,其中p_i是素数 \\若n=q_1q_2...q_t,\ \ q_1\leq q_2\leq...\leq q_t,其中q_j是素数 \\则s = t,\ \ p_i = q_i,\ \ 1\leq i \leq s 1nn=p1p2...ps,  p1p2...ps,pin=q1q2...qt,  q1q2...qt,qjs=t,  pi=qi,  1is

证明

分 解 的 存 在 性 证 明 思 路 : 若 不 是 素 数 就 必 有 最 小 质 约 数 每 个 大 于 1 的 正 整 数 n 都 可 以 表 达 成 素 数 的 乘 积 , 将 素 因 子 按 非 降 序 排 列 。 即 n = p 1 p 2 . . . p s , p 1 ≤ p 2 ≤ . . . ≤ p s , 其 中 p i 是 素 数 。 下 面 证 明 表 达 方 式 的 唯 一 性 : 假 设 还 有 n = q 1 q 2 . . . q t ,    q 1 ≤ q 2 ≤ . . . ≤ q t , 其 中 q j 是 素 数 则     p 1 p 2 . . . p s = q 1 q 2 . . . q t       ( 1 ) 因 此 p 1 ∣ q 1 q 2 . . . q t , 因 为 p 1 是 素 数 , 故 存 在 q j , 使 得 p 1 ∣ q j 但 是 p 1 , q j 都 是 素 数 , 所 以 p 1 = q j . 同 理 , 存 在 p k , 使 得 q 1 = p k , 于 是 p 1 ≤ p k = q 1 ≤ q j = p 1 , 即 有 p 1 = q 1 , 带 入 公 式 ( 1 ) , 消 去 p 1 , 得 到 p 2 . . . p s = q 2 . . . q t 重 复 上 述 步 骤 , 最 后 可 得 s = t , p i = q i , 1 ≤ t ≤ s . 分解的存在性证明思路:若不是素数就必有最小质约数 \\每个大于1的正整数n都可以表达成素数的乘积,将素因子按非降序排列。 \\即n=p_1p_2...p_s,p_1\leq p_2\leq ...\leq p_s,其中p_i是素数。 \\ \\下面证明表达方式的唯一性:假设还有 \\n = q_1q_2...q_t,\ \ q_1\leq q_2\leq...\leq q_t,其中q_j是素数 \\则\ \ \ p_1p_2...p_s=q_1q_2...q_t\ \ \ \ \ (1) \\因此p_1|q_1q_2...q_t,因为p_1是素数,故存在q_j,使得p_1|q_j \\但是p_1,q_j都是素数,所以p_1=q_j. \\同理,存在p_k,使得q_1=p_k, \\于是p_1\leq p_k=q_1\leq q_j=p_1, \\即有p_1=q_1,带入公式(1),消去p_1,得到 p_2...p_s=q_2...q_t \\重复上述步骤,最后可得s=t,p_i=q_i,1\leq t\leq s. 1nn=p1p2...psp1p2...ps,pin=q1q2...qt,  q1q2...qt,qj   p1p2...ps=q1q2...qt     (1)p1q1q2...qt,p1qj使p1qjp1,qjp1=qj.pk使q1=pk,p1pk=q1qj=p1,p1=q1,(1),p1,p2...ps=q2...qts=t,pi=qi,1ts.

整数的标准分解式

设 n 式 一 个 大 于 1 的 整 数 , 且 n = p 1 α 1 p 2 α 2 . . . p s α s , α i > 0 , i = 1 , 2 , . . . s 则 d ∣ n   ( d > 0 ) 当 且 仅 当 d = p 1 β 1 p 2 β 2 . . . p s β s , α i ≥ β i ≥ s . 设n式一个大于1的整数,且 \\n=p_1^{α_1}p_2^{α_2}...p_s^{α_s},α_i>0,i=1,2,...s \\则d|n\ (d>0)当且仅当d=p_1^{β_1}p_2^{β_2}...p_s^{β_s},α_i\geqβ_i\geq s. n1n=p1α1p2α2...psαs,αi>0,i=1,2,...sdn (d>0)d=p1β1p2β2...psβs,αiβis.

  • 有时为了应用方便,在分解式中插入若干素数的零次幂,而把n表达成如下形式:设n是一个大于1的整数,且 n = p 1 α 1 p 2 α 2 . . . p s α s ,   α i ≥ 0 ,   1 ≤ i ≤ s n=p_1^{α_1}p_2^{α_2}...p_s^{α_s},\ α_i\geq0,\ 1\leq i\leq s n=p1α1p2α2...psαs, αi0, 1is

补充最小公倍数定义

设 a 1 , a 2 , . . . , a n 为 n 个 整 数 , 若 a 1 ∣ m , a 2 ∣ m , . . . , a n ∣ m , 则 m 叫 做 a 1 , a 2 , . . , a n 的 一 个 公 倍 数 . 这 些 公 倍 数 中 最 小 的 整 数 叫 做 最 小 公 倍 数 , 记 作 [ a 1 , a 2 , . . . , a n ] . 设a_1,a_2,...,a_n为n个整数,若a_1|m,a_2|m,...,a_n|m, \\则m叫做a_1,a_2,..,a_n的一个公倍数. \\这些公倍数中最小的整数叫做最小公倍数,记作[a_1,a_2,...,a_n]. a1,a2,...,anna1m,a2m,...,anm,ma1,a2,..,an.[a1,a2,...,an].

最大公因数和最小公倍数的标准分解式

定理

同上,太麻烦了不写了

证明

比较容易,按定义就可以证明

ord_p函数

O r d p ( n ) Ord_p(n) Ordp(n)

n 的 标 准 分 解 式 中 , 素 数 p 的 幂 次 可 以 定 义 为 o r d p ( n ) . 即 可 看 作 是 函 数 o r d p : { 1 , 2 , 3 , . . . } → { 0 , 1 , 2 , . . . } n = ∏ p 为 素 数 p o r d P ( n ) n的标准分解式中,素数p的幂次可以定义为ord_p(n).即可看作是函数 \\ord_p:\{1,2,3,...\}→\{0,1,2,...\} \\n=\prod_{p为素数}p^{ord_P(n)} npordp(n).ordp:{1,2,3,...}{0,1,2,...}n=ppordP(n)

关于 o r d p ( n ) ord_p(n) ordp(n)的性质(其中p为素数):

  • o r d p ( a b ) = o r d p ( a ) + o r d p ( b ) ord_p(ab)=ord_p(a)+ord_p(b) ordp(ab)=ordp(a)+ordp(b)(因为 o r d p ord_p ordp将乘法转换为加法,所以 o r d p ord_p ordp类似于对数函数!)
  • o r d P ( a + b ) ≥ m i n { o r d p ( a ) , o r d p ( b ) } ord_P(a+b)\geq min\{ord_p(a),ord_p(b)\} ordP(a+b)min{ordp(a),ordp(b)}
  • o r d p ( a ) ≠ o r d p ( b ) ord_p(a)≠ord_p(b) ordp(a)=ordp(b),则 o r d P ( a + b ) = m i n { o r d p ( a ) , o r d p ( b ) } ord_P(a+b)= min\{ord_p(a),ord_p(b)\} ordP(a+b)=min{ordp(a),ordp(b)}

满足第1条和第2条的函数成为赋值函数

4. 因式分解定理

不可约多项式

定义
  • 不可约多项式的因式只有非零常数c,以及它的非零常数倍 c p ( x ) cp(x) cp(x)

多项式的分解

  • 多项式能否再分解与所规定的系数范围有关

不可约多项式的性质

类比在整数上定义的方式

因式分解定理

同样,类比

证明

存在性:一直分解下去,直到不能再分解

唯一性:假设还有另一个分解,推出两者是同一个分解。具体过程类比整数那部分

定义

多 项 式 f ( x ) ∈ F [ x ] 含 有 因 式 x − a ( a ∈ F ) 当 且 仅 当 f ( a ) = 0 多项式f(x)∈F[x]含有因式x-a(a∈F)当且仅当f(a)=0 f(x)F[x]xa(aF)f(a)=0

证明

由 欧 几 里 得 除 法 f ( x ) = q ( x ) ( x − a ) + r , 其 中 r ∈ F 于 是 ( x − a ) ∣ f ( x ) 当 且 仅 当 f ( a ) = 0 由欧几里得除法f(x)=q(x)(x-a)+r,其中r∈F \\于是(x-a)|f(x)当且仅当f(a)=0 f(x)=q(x)(xa)+r,rF(xa)f(x)f(a)=0

例题

在有理数域上对 x 15 − 1 x^{15}-1 x151进行因数分解
x 15 − 1 = ( x 3 ) 5 − 1 = ( x 3 − 1 ) ( x 12 + x 9 + x 6 + x 3 + x 1 ) = ( x − 1 ) ( x 2 + x + 1 ) ( x 12 + x 9 + x 6 + x 3 + x 1 ) 另 一 方 面 , x 15 − 1 = ( x 5 ) 3 − 1 = ( x 5 − 1 ) ( x 10 + x 5 + x 1 ) = ( x − 1 ) ( x 4 + x 3 + x 2 + x 1 + 1 ) ( x 10 + x 5 + x 1 ) 首 先 , x 2 + x + 1 没 有 有 理 根 ( 实 际 也 没 有 实 根 ) , 故 为 有 理 数 域 上 的 不 可 约 多 项 式 其 次 , 做 除 法 可 知 x 2 + x + 1 ∣ x 10 + x 5 + x 1 , 得 到 x 15 − 1 = ( x 5 ) 3 − 1 = ( x − 1 ) ( x 4 + x 3 + x 2 + x 1 + 1 ) ( x 2 + x + 1 ) ( x 8 − x 7 + x 5 − x 4 + x 3 − x + 1 ) x^{15}-1 \\={(x^3)}^5-1 \\=(x^3-1)(x^{12}+x^9+x^6+x^3+x^1) \\=(x-1)(x^2+x+1)(x^{12}+x^9+x^6+x^3+x^1) \\另一方面, \\x^{15}-1 \\={(x^5)}^3-1 \\=(x^5-1)(x^{10}+x^5+x^1) \\=(x-1)(x^4+x^3+x^2+x^1+1)(x^{10}+x^5+x^1) \\首先,x^2+x+1没有有理根(实际也没有实根),故为有理数域上的不可约多项式 \\其次,做除法可知x^2+x+1|x^{10}+x^5+x^1,得到 \\x^{15}-1={(x^5)}^3-1 \\=(x-1)(x^4+x^3+x^2+x^1+1)(x^2+x+1) \\(x^8-x^7+x^5-x^4+x^3-x+1) x151=(x3)51=(x31)(x12+x9+x6+x3+x1)=(x1)(x2+x+1)(x12+x9+x6+x3+x1)x151=(x5)31=(x51)(x10+x5+x1)=(x1)(x4+x3+x2+x1+1)(x10+x5+x1)x2+x+1x2+x+1x10+x5+x1,x151=(x5)31=(x1)(x4+x3+x2+x1+1)(x2+x+1)(x8x7+x5x4+x3x+1)
其实从上面的式子里还可以得到:
x 10 + x 5 + x 1 = ( x 2 + x + 1 ) ( x 8 − x 7 + x 5 − x 4 + x 3 − x + 1 ) x 12 + x 9 + x 6 + x 3 + x 1 = ( x 4 + x 3 + x 2 + x 1 + 1 ) ( x 8 − x 7 + x 5 − x 4 + x 3 − x + 1 ) x^{10}+x^5+x^1=(x^2+x+1)(x^8-x^7+x^5-x^4+x^3-x+1) \\x^{12}+x^9+x^6+x^3+x^1=(x^4+x^3+x^2+x^1+1)(x^8-x^7+x^5-x^4+x^3-x+1) x10+x5+x1=(x2+x+1)(x8x7+x5x4+x3x+1)x12+x9+x6+x3+x1=(x4+x3+x2+x1+1)(x8x7+x5x4+x3x+1)
这部分(因式分解)做题也没什么心得,能想到的就是①不要怕麻烦,多思考多动笔多尝试②学会模仿,模仿已知的因式分解是怎么分解的,也许我的思维不想别人那样敏捷,但是照着葫芦画瓢总是应该会的!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值