概率统计 第二章 随机变量及其分布(续) 2021.10.11

本来想接着做笔记记录的,但是内容实在是太多太难编辑打字了……所以以后可能只会记录大纲+一些书上没有的补充内容\想法了

2.5 连续随机变量及其概率密度函数

随机变量 X X X,简记为 r . v . X r.v.X r.v.X,其分布函数 F ( X ) = P ( X ≤ x ) F(X)=P(X\le x) F(X)=P(Xx)

定义一

设随机变量 X X X的分布函数为 F ( x ) F(x) F(x),如果存在一个定义在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)的非负可积函数 f ( x ) f(x) f(x),使得对任何实数 x x x,恒有
F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=\int_{-\infty}^{x}f(t)dt F(x)=xf(t)dt
则称 X X X为连续型随机变量,称函数 f ( x ) f(x) f(x)为随机变量 X X X的概率密度函数(或分布密度函数),简称概率密度

对于这个定义,注意:

  • F ( x ) F(x) F(x) f ( x ) f(x) f(x)的定义域都是 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),做题时不要漏定义域
  • f ( x ) f(x) f(x)必须是可积的
概率密度函数的性质
  1. 对一切 x ∈ ( − ∞ , + ∞ ) x\in (-\infty,+\infty) x(,+) f ( x ) ≥ 0 f(x)\ge 0 f(x)0
  2. ∫ − ∞ + ∞ f ( t ) d t = F ( + ∞ ) = 1 \int_{-\infty}^{+\infty}f(t)dt=F(+\infty)=1 +f(t)dt=F(+)=1

反之,可以证明,任何一个具有上述性质1和2的实直线上的**可积函数 f ( x ) f(x) f(x)**都可以成为某个连续性随机变量的概率密度函数。

定理一

X X X为连续型随机变量,分布函数为 F ( x ) F(x) F(x),概率密度函数为 f ( x ) f(x) f(x),则有:

2.6 常用的连续型随机变量分布

1.均匀分布

2.指数分布

3.韦布尔分布*

4.Γ分布

2.7 正态分布

  • 标准正态分布
  • α \alpha α分位点
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值