信息安全数学基础
——第二章 同余
文章目录
- 信息安全数学基础
- ——第二章 同余
- 前言
- 一、同余的概念及基本性质
- 二、剩余类及完全剩余类
- 二、简化剩余系与欧拉函数
- 三、欧拉定理、费马小定理和Wilson定理
- 四、习题
- 4.1写出模9的一个完全剩余系,它的每个数是基奇数
- 4.2证明:当m>2时,0²,1²,……,(m-1)²一定不是模m的完全剩余系.
- 4.3设p为素数.证明:如果a² ≡ b²(mod p),则p|a-b或p|a+b.
- 4.4证明:如果n是正整数,那么 1+2+3+……+(n-1)≡ 0(mod n)
- 4.5 证明:如果n是正整数,那么 1³+2³+3³+……+(n-1)³≡ 0(mod n)
- 4.6 运用Wilson定理,求8·9·10·11·12·13(mod 7)
- 4.7 证明:如果a是整数,且(a,3)=1,那么a⁷ ≡ a(mod 63)
- 4.8 证明:如果a是与32760互素的整数,那么a¹² ≡ 1(mod 32760)
前言
下面讨论同余的性质,以对整数进行恰当分类。
提示:以下是本篇文章正文内容,下面案例可供参考,大多数都是自己整理的,适用于我自己,不一定适用于所有人
一、同余的概念及基本性质
1.1同余的概念
定义:给定一个正整数m.两个整数a,b叫做模m同余,如果a-b被m整除,或m|a-b,就记作a≡b(mod m).否则就叫做模m不同余
1.2同余的判断
定理:设m是一个正整数,设a,b是两个整数,则a≡b(mod m)的充要条件是存在另一个整数q使得a = b + q·m
模同余的性质:
设m是一个正整数,则模m同余是等价关系,即
(1)自反性:对于任一整数a,有a≡a(mod m)
(2)对称性:若a≡b(mod m),则b≡a(mod m)
(3)传递性:若a≡b(mod m),b≡c(mod m),则a≡c(mod m)
例题:
1.3同余的性质
定理:设m是一个正整数,设d·a≡d·b(mod m).如果(d,m)= 1,则a≡b(mod m).
定理:设m是一个正整数,设a≡b(mod m),d>0,则d·a≡d·b(mod d·m)
定理:设m是一个正整数,设a≡b(mod m).如果d|m,则a≡b(mod d)
二、剩余类及完全剩余类
2.1剩余类与剩余
这个例题我就不上了,后面作业题里面有。
二、简化剩余系与欧拉函数
2.1欧拉函数
定义:设m是一个正整数,则m个整数1,2,…,m-1,m中与m互素的整数的个数,记作φ(m),通常叫做欧拉函数
例题:
定理:
2.2简化剩余类与简化剩余系
定义:一个模m的剩余类叫做简化剩余类,如果该类中存在一个与m互素的剩余,这时,简化剩余类中的剩余叫简化剩余.
定义:设m是一个正整数,在模m的所有不同简化剩余类中,从每个类任取一个数组成的整数的集合,叫做模m的一个简化剩余系.
性质:设m>1是整数,a,b是模m的两个简化剩余,则它们的乘积也是简化剩余.
定理:设m是一个正整数,a是满足(a,m)=1的整数.如果k遍历模m的一个简化剩余系,则a·k也是遍历模m的一个简化剩余系.
定理:设m是一个正整数,a是满足(a,m)=1的整数,则存在唯一的整数a’,1≤a’<m,使得a·a’≡1(mod m).
2.3欧拉函数的性质
定理:设m,n是互素的两个正整数,则φ(m·n) = φ(m)·φ(n)
例题:
φ(77)=φ(7)φ(11)=6·10=60
φ(30)=φ(2)φ(3)φ(5)=1·2·4=8
三、欧拉定理、费马小定理和Wilson定理
3.1欧拉定理
定理:设m是大于1的整数.如果a是满足(a,m)=1的整数,则a^φ(m)≡1(mod m)
例题:
设m = 11,a = 2.有(2,11)=1,φ(11)=10,所以2¹⁰≡1(mod 11).
3.2费马小定理
定理:设p是一个素数,则对任意整数a,有a^p ≡ a (mod p)
推论:设p是一个素数,则对任意整数a,以及对任意整数t,k,有a^(t+k·(p-1)) ≡ a ^t (mod p)
3.3Wilson定理
定理:设p是一个素数,则(p-1)!≡ -1(mod p)
3.4模重复平方计算法
这些符号绕得有点晕,上例题: