基于英特尔oneAPI的并行矩阵乘法项目

问题陈述

编写⼀个基于oneAPI的C++/SYCL程序来执行矩阵乘法操作。需要考虑大尺寸矩阵的乘法操作以及不同线程之间的数据依赖关系。通常在实现矩阵乘法时,可以使用块矩阵乘法以及共享内存来提高计算效率。

项目简介

利用基于SYCL的编程模型在GPU上实现矩阵乘法的计算,步骤如下:

1. 分配内存:在主机端分配内存空间用于存储输⼊矩阵和输出矩阵,同时在GPU端分配内存空间用于存储相应的输入和输出数据。

2. 数据传输:将输入矩阵数据从主机端内存传输到GPU端内存中。

3. 核函数调用:在SYCL中,矩阵乘法的计算通常会在GPU上使用核函数来实现并行计算。核函数

会分配线程块和线程来处理不同的数据块。

4. 并行计算:在核函数中,每个线程负责计算输出矩阵的⼀个单独的元素。为了最大限度地利用

GPU的并行计算能力,通常会使用⼆维线程块和线程网格的方式来处理矩阵的乘法计算。

5. 数据传输:计算完成后,将输出矩阵数据从GPU端内存传输回主机端内存中,以便进⼀步处理或分析。

在并行计算矩阵乘法时,可以利用线程块和线程的层次结构来优化计算。通过合理划分矩阵数据并利用共享内存来减少全局内存访问的次数,可以⼤幅提高计算效率。此外,还可以利用GPU上的多个计算单元并执行行矩阵乘法,进⼀步提高计算速度。

相关技术

SYCL编程模型

oneAPI中支持SYCL编程模型的C++编译器

英特尔oneAPI Developer Cloud 服务

代码

#include <sycl/sycl.hpp>
#include <iomanip>
#include <iostream>
#include <fstream>

using namespace sycl;

int main(){
    //# Define vectors for matrices
    std::vector<float> matrix_a(44*96);
    std::vector<float> matrix_b(96*16);
    std::vector<float> matrix_c(44*16);//store output result
    std::vector<float> matrix_d(44*16);//store correct answer for verification
    
    // Initialize matrices with values
    std::ifstream ifs("mul.txt",std::ios::in);
    for (int i=0; i<44; i++)
        for (int j=0; j<96; j++){
            ifs>>matrix_a[i*96+j];
    }
    float v1 = 1.f;
    for (int i=0; i<96; i++)
        for (int j=0; j<16; j++){
            matrix_b[i*16+j] = v1++;
    }
    
    // Define queue with default device for offloading computation
     queue q;
    
    //# Create buffers for matrices
    buffer<float, 2> a{ matrix_a.data(), range<2>{44, 96} };
    buffer<float, 2> b{ matrix_b.data(), range<2>{96, 16} };
    buffer<float, 2> c{ matrix_c.data(), range<2>{44, 16} };

    // Submit command groups to execute on device
    q.submit([&](handler &h){
        // Create accessors to copy buffers to the device
        accessor A(a, h, read_only);
        accessor B(b, h, read_only);
        accessor C(c, h, write_only);

        // Define size for ND-range and work-group size
        range<2> global_size(44,16);
        range<2> work_group_size(44,16);

        // Parallel Compute Matrix Multiplication
        h.parallel_for(nd_range<2>{global_size, work_group_size}, [=](id<2> index){
            const int i = index[0];
            const int j = index[1];

            // matrix multiplication computation from local memory
            float temp = 0.f;
            for (int k = 0; k < 96; k++) {
                temp += A[i][k] * B[k][j];
            }
            C[index] = temp;
        });
    });

    return 0;
}

运行

使用英特尔oneAPI Developer Cloud 服务运行,不需要额外配置运行环境。在英特尔oneAPI Developer Cloud 服务中,启动Jupyter服务,可以直接在平台上编写C++/SYCL程序并运行。我们可以编写一个shell脚本记录运行时间、编译并运行程序。

#!/bin/bash
echo
echo start: $(date "+%y%m%d.%H%M%S.%3N")
echo

source /opt/intel/oneapi/setvars.sh > /dev/null 2>&1
icpx -fsycl ./matrix.cpp 
if [ $? -eq 0 ]; then ./a.out; fi

echo
echo stop:  $(date "+%y%m%d.%H%M%S.%3N")
echo

总结

在本次项目中,我们学到了Intel oneAPI的概念,以及oneAPI所提供的其中一种编程模型SYCL的概念、编程方法以及底层原理。我们还了解了SYCL如何通过并行计算矩阵乘法实现加速。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值