问题陈述
编写⼀个基于oneAPI的C++/SYCL程序来执行矩阵乘法操作。需要考虑大尺寸矩阵的乘法操作以及不同线程之间的数据依赖关系。通常在实现矩阵乘法时,可以使用块矩阵乘法以及共享内存来提高计算效率。
项目简介
利用基于SYCL的编程模型在GPU上实现矩阵乘法的计算,步骤如下:
1. 分配内存:在主机端分配内存空间用于存储输⼊矩阵和输出矩阵,同时在GPU端分配内存空间用于存储相应的输入和输出数据。
2. 数据传输:将输入矩阵数据从主机端内存传输到GPU端内存中。
3. 核函数调用:在SYCL中,矩阵乘法的计算通常会在GPU上使用核函数来实现并行计算。核函数
会分配线程块和线程来处理不同的数据块。
4. 并行计算:在核函数中,每个线程负责计算输出矩阵的⼀个单独的元素。为了最大限度地利用
GPU的并行计算能力,通常会使用⼆维线程块和线程网格的方式来处理矩阵的乘法计算。
5. 数据传输:计算完成后,将输出矩阵数据从GPU端内存传输回主机端内存中,以便进⼀步处理或分析。
在并行计算矩阵乘法时,可以利用线程块和线程的层次结构来优化计算。通过合理划分矩阵数据并利用共享内存来减少全局内存访问的次数,可以⼤幅提高计算效率。此外,还可以利用GPU上的多个计算单元并执行行矩阵乘法,进⼀步提高计算速度。
相关技术
SYCL编程模型
oneAPI中支持SYCL编程模型的C++编译器
英特尔oneAPI Developer Cloud 服务
代码
#include <sycl/sycl.hpp>
#include <iomanip>
#include <iostream>
#include <fstream>
using namespace sycl;
int main(){
//# Define vectors for matrices
std::vector<float> matrix_a(44*96);
std::vector<float> matrix_b(96*16);
std::vector<float> matrix_c(44*16);//store output result
std::vector<float> matrix_d(44*16);//store correct answer for verification
// Initialize matrices with values
std::ifstream ifs("mul.txt",std::ios::in);
for (int i=0; i<44; i++)
for (int j=0; j<96; j++){
ifs>>matrix_a[i*96+j];
}
float v1 = 1.f;
for (int i=0; i<96; i++)
for (int j=0; j<16; j++){
matrix_b[i*16+j] = v1++;
}
// Define queue with default device for offloading computation
queue q;
//# Create buffers for matrices
buffer<float, 2> a{ matrix_a.data(), range<2>{44, 96} };
buffer<float, 2> b{ matrix_b.data(), range<2>{96, 16} };
buffer<float, 2> c{ matrix_c.data(), range<2>{44, 16} };
// Submit command groups to execute on device
q.submit([&](handler &h){
// Create accessors to copy buffers to the device
accessor A(a, h, read_only);
accessor B(b, h, read_only);
accessor C(c, h, write_only);
// Define size for ND-range and work-group size
range<2> global_size(44,16);
range<2> work_group_size(44,16);
// Parallel Compute Matrix Multiplication
h.parallel_for(nd_range<2>{global_size, work_group_size}, [=](id<2> index){
const int i = index[0];
const int j = index[1];
// matrix multiplication computation from local memory
float temp = 0.f;
for (int k = 0; k < 96; k++) {
temp += A[i][k] * B[k][j];
}
C[index] = temp;
});
});
return 0;
}
运行
使用英特尔oneAPI Developer Cloud 服务运行,不需要额外配置运行环境。在英特尔oneAPI Developer Cloud 服务中,启动Jupyter服务,可以直接在平台上编写C++/SYCL程序并运行。我们可以编写一个shell脚本记录运行时间、编译并运行程序。
#!/bin/bash
echo
echo start: $(date "+%y%m%d.%H%M%S.%3N")
echo
source /opt/intel/oneapi/setvars.sh > /dev/null 2>&1
icpx -fsycl ./matrix.cpp
if [ $? -eq 0 ]; then ./a.out; fi
echo
echo stop: $(date "+%y%m%d.%H%M%S.%3N")
echo
总结
在本次项目中,我们学到了Intel oneAPI的概念,以及oneAPI所提供的其中一种编程模型SYCL的概念、编程方法以及底层原理。我们还了解了SYCL如何通过并行计算矩阵乘法实现加速。