NLP 2.4: Kernel trick 和svm

这篇博客探讨了线性SVM在处理非线性数据时的局限性,提出了将数据映射到高维空间的方法。文章详细介绍了核技巧如何在不增加计算复杂度的情况下解决这一问题,特别是拉格朗日乘子法和KKT条件在SVM中的应用。此外,还讨论了SVM的对偶问题和各种核函数,如线性、高斯和多项式核,强调了它们在保持计算效率的同时增强模型的表达能力。
摘要由CSDN通过智能技术生成

1、Linear SVM的缺点

在这里插入图片描述
无法将非线性的数据分开

解决:

  • 1、把数据映射到高维空间
  • 2、使用神经网络

2、数据映射到高维空间

在这里插入图片描述
缺点:

  • 复杂度的增加

Kernel trick使用可以W维持时间复杂度

3、拉格朗日等号处理条件

在这里插入图片描述

在这里插入图片描述

Multiple equalities

在这里插入图片描述

4、拉格朗日不等式条件处理

在这里插入图片描述

5、KKT条件

在这里插入图片描述

6、KKT Condition of SVM

在这里插入图片描述

7、Primal-Dual problem

为什么要转换为对偶问题:

  • primal 问题可能会很难解决
  • dual问题上可能会发现一些有趣的insight

primal上如果是optimal的,dual问题是sub-optimal的解,会比primal的解稍微差一些。

在这里插入图片描述

8、SVM 的 dual derivation

在这里插入图片描述

9、Kernel Trick

将输入通过一个核函数映射到高维空间。
输入通过核函数后,在计算内积的时候不依赖于高维空间的数据,还是根据输入数据进行计算。
在这里插入图片描述
设计一个核函数,使得数据映射到高维空间,但在做内积计算时依然保持原有的时间复杂度。
不仅仅对于SVM,使用k-means也可以使用

Kernel种类

  • linear kernel
  • Gaussian kernel:高斯核
  • Polynomial kernel: 多项式核

在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值