python深度学习
文章平均质量分 72
掌握python深度学习之统计相关知识。
可可kk
临床流行病学与统计研究人员(初学者)
展开
-
第二章神经网络的数学基础
神经网络的数学基础初识神经网络二级目录三级目录初识神经网络二级目录三级目录原创 2021-08-27 08:02:51 · 616 阅读 · 0 评论 -
1.3 为什么是深度学习,为什么是现在
三种力量在推动着机器学习的进步:硬件、数据集和基准、算法上的改进硬件原创 2021-08-21 12:58:42 · 114 阅读 · 0 评论 -
1.2 深度学习之前:机器学习简史
概率建模概率建模(probabilistic modeling)是统计学原理在数据分析中的应用。它是最早的机器学习形式之一,至今仍在广泛使用。其中最有名的算法之一就是朴素贝叶斯算法,假设输入数据的特征都是独立的。另一个密切相关的模型是logistic回归,是一种分类算法。早期神经网络核方法核方法(kernel method)是一组分类算法,其中最有名的就是支持向量机(SVM,support vector machine).SVM的目标是通过在属于两个不同类别的两组数据点之间找到良好决策边界(deci原创 2021-08-21 12:29:55 · 164 阅读 · 0 评论 -
Python 深度学习笔记 第一章什么是深度学习1.1人工智能、机器学习与深度学习
学习目标:掌握Python深度学习这本书[学习这本书]学习时间:计划学习一个月学习产出:技术笔记九篇第一章 什么是深度学习学习目标:掌握Python深度学习这本书学习时间:计划学习一个月学习产出:技术笔记九篇人工智能、机器学习与深度学习人工智能机器学习从数据中学习表示深度学习之深度用三张图理解深度学习的工作原理深度学习已经取得的进展不要相信短期炒作人工智能的未来深度学习之前:机器学习简史概率建模早期神经网络核方法决策树 随机森林与梯度提升机回到神经网络深度学习有何不同机器学习现状为什么是深度学习,原创 2021-08-10 09:49:16 · 506 阅读 · 2 评论