自动化纤维束定量AFQ概述1

博客介绍基于Matlab软件的扩散加权成像预处理,将T1加权图像对齐到AC - PC空间,扩散加权图像用FSL的FDT预处理。还阐述了自动纤维量化(AFQ)软件的处理步骤,其在MATLAB中实现,可产生“束轮廓”测量组织特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于matlab软件
2.4.3. 扩散加权

成像预处理:将每个参与者的T1加权图像对齐到AC-PC空间中,为大脑可视化和牵引术提供共同的方向。这种对齐涉及手动定义T1图像中的几个解剖标志:AC(前连合),PC(后连合)和矢状面中。扩散加权图像在FMRIB的软件库(FSL)中使用FMRIB的扩散工具箱(FDT)进行预处理,以进行涡流校正和头部运动校正。然后将预处理的扩散加权图像和ACPC对齐的T1加权图像输入到自动纤维量化(AFQ)软件中(Yeatman等人,2012)。AFQ 是在 MATLAB 中实现的软件包,用于识别每个受试者大脑中 20 个主要白质束的核心,然后量化估计束核心附近体素的组织特性(Yeatman 等人,2012 年)。AFQ程序基于(Hua等人,2008)和(Zhang等人,2008)描述的方法的组合,可以总结为6个步骤:(1)对每个受试者进行全脑牵引术,其中所有纤维都用白质掩模跟踪,白质面罩定义为FA值为>0.3的所有体素;(2)纤维束分割基于(Wagana等人,2007)中描述的航点ROI程序进行。如果纤维通过定义束中心部分的两个航点 ROI,则将其指定为特定纤维束的候选者;(3)纤维束细化涉及根据其与标准纤维束概率图的相似性对每个候选纤维进行评分(Hua等人,2008)。保留具有高概率分数的纤维,从而定义纤维束芯;(4)纤维束清洁过滤掉与表示为三维高斯分布的纤维组核心明显偏离的杂散纤维;(5) 纤维束夹在横跨该束的两个定义投资回报率之间的中央部分;最后(6)纤维束定量,以计算沿纤维组轨迹的100个等距节点的扩散措施。扩散测量是通过根据其与束芯的距离,取构成道的每根光纤的加权平均值来计算的。因此,AFQ管道产生一组“束轮廓”,用于测量从束芯开始到结束的等距样品位置(100个节点用于我们的分析)的组织特性(FA,RD,AxD和MD)。每个束和组织特性组合都有一个轮廓(例如,沿额枕下束的 FA)。

Rogojin, Alica et al. “Differences in structural MRI and diffusion tensor imaging underlie visuomotor performance declines in older adults with an increased risk for Alzheimer’s disease.” Frontiers in aging neuroscience vol. 14 1054516. 12 Jan. 2023,
https://yeatmanlab.github.io/AFQ/tutorials/AFQ_example示例流程

软件包Github
https://github.com/vistalab/vistasoft
https://autofq.org/background/diffusion-mri/
参考文献
Yeatman, Jason D et al. “Tract profiles of white matter properties: automating fiber-tract quantification.” PloS one vol. 7,11 (2012): e49790.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值