“接”是针对题目进行必要的分析,比较简略;
“发”是对此题型的解题套路总结,并结合历年真题或者典型例题进行运用。
涉及到的知识全部来源于王道各科教材(2025版)
(408神功练成中… …)
一、接:本题分析
2009-07
分析
【答】A
【解析】对于I,所有顶点的的度之和等于边数的2倍(因为每一条边会被计算两次),所以一定是偶数;对于II,对于一个无向连通图的生成树来说,其边数等于顶点个数减1;对于III,对于一个环形无向连通图来说,其所有顶点的度均为2。
二、发:套路总结
(一)连通、连通图和连通分量(结构6.1.1.6)
在无向图中,若从顶点v到顶点w有路径存在,则称v和w是连通的。
若图G中任意两个顶点都是连通的,则称图 G为连通图,否则称为非连通图。
无向图中的极大连通子图称为连通分量。
(二)顶点的度与边之间的关系(结构6.1.1.9)
在无向图中,顶点v的度是指依附于顶点v的边的条数,记为TD(v)。无向图全部顶点的度之和等于边数的2倍,因为每一条边会被计算两次。
在有向图中,顶点v的度分为入度和出度,入度是以顶点v为终点的有向边的数目,记为ID(v);而出度是以顶点v为起点的有向边的数目,记为 OD(v)。顶点v的度等于其入度与出度之和,即 TD(v)=ID(v)+OD(v)。有向图的全部顶点的入度之和与出度之和相等,并且等于边数,这是因为每条有向边都有一个起点和终点。
历年选择题主要考察图的基础概念与特性,这部分的知识大致要点如下(不严谨版)。
知识点 | 要点 |
---|---|
有向图 | 边有方向 |
无向图 | 边无方向 |
简单图 | 无重复边、无指向结点自身的边 |
多重图 | 简单图的反例 |
完全图 | 任意两顶点之间都有边,或任意两个顶点之间都存在方向相反的两条边 |
子图 | 边集的子集加点集的子集组成的图 |
生成子图 | 满足V(G’)=V(G)的子图G’是G的生成子图 |
极大连通子图 | 要求子图必须连通,而且包含尽可能多的顶点和边 |
极小连通子图 | 既要保持子图连通又要使得边数最少的子图 |
无向连通图 | 无向图中的任意两点之间都有“路”,极大连通子图称为连通分量 |
有向连通图 | 有向图中的任意两点之间都有“双向奔赴的路”,极大强连通子图称为强连通分量 |
生成树 | 连通图的生成树是包含图中全部顶点的一个极小连通子图 |
点的度 | 依附于点的边数,或者进、出边的条数 |
边的权 | 每条边都可以标上具有某种含义的数值 |
路径 | 点到点之间的“路” |
回路 | 起点与终点是一点 |
简单路径 | 顶点不重复出现的路径 |
简单回路 | 顶点不重复出现的回路 |
距离 | 点到点之间最短路径的长度 |
有向树 | 顶点的入度为0、其余顶点的入度均为1的有向图 |
写在后面
这个专栏主要是我在学习408真题的过程中总结的一些笔记,因为我学的也很一般,如果有错误和不足之处,还望大家在评论区指出。希望能给大家的学习带来一点帮助,共同进步!!!