【刷题实录之动态规划】leecode1049. 最后一块石头的重量 II

在这里插入图片描述
题目:有一堆石头,每块石头的重量都是正整数。每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:如果 x == y,那么两块石头都会被完全粉碎;如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。最后,最多只会剩下一块石头。返回此石头最小的可能重量。如果没有石头剩下,就返回 0。

示例:
输入:[2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 1000

题解:本题的本质是求背包最多能装多少。这是 背包算法可以解决的经典类型题目。采用动态规划五步法解决:
(1)确定dp数组(dp table)以及下标的含义:dp[j] 表示 容量(所能装的重量)为j的背包,所背的物品价值最大可以为dp[j]。
(2)确定递推公式:本题,相当于背包里放入数值,那么物品i的重量是nums[i],其价值也是nums[i]。所以递推公式:dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
(3)dp数组如何初始化:从dp[j]的定义来看,首先dp[0]一定是0。如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了。本题题目中 只包含正整数的非空数组,所以非0下标的元素初始化为0就可以了。
(4)确定遍历顺序:如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历。
(5)举例推导dp数组:dp[j]的数值一定是小于等于j的。如果dp[j] == j 说明,集合中的子集总和正好可以凑成总和j。

代码(C++)

class Solution {
public:
    int sum(vector<int> vec){
        int sum = 0;

        for(int i = 0; i < vec.size(); i++){
            sum += vec[i];
        }

        return sum;
    }
    int lastStoneWeightII(vector<int>& nums) {
        int size = nums.size();
        int space = sum(nums) / 2;
        vector<int> dp(space+1,0);  //初始化数组

        for(int i = 0;i < size;i++){  //遍历
            for(int j = space;j >= nums[i];j--){
                dp[j] = max(dp[j],dp[j - nums[i]] + nums[i]);  //递推公式
            }
        }
        int last = abs(sum(nums) - dp[space] - dp[space]);

        return last;
    }
};

写在后面

这个专栏主要是我在刷题的过程中总结的一些笔记,因为我学的也很一般,如果有错误和不足之处,还望大家在评论区指出。希望能给大家的学习带来一点帮助,共同进步!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值