当你的 AI 原型变成服务于真实用户和实际业务需求的生产系统时,一切都会改变。你之前给高管留下深刻印象的精美演示现在需要处理流量高峰、控制预算、从中断中恢复并生成一致的输出——所有这些都需要确保敏感数据的安全。欢迎来到 LLMOps 的世界。
这就是 AI 开发中真正需要解决的问题——这项看似不起眼但却至关重要的工作,就是确保你的语言模型应用程序不仅在演示中有效,而且在现实世界中也能蓬勃发展。
为什么合适的 LLMOps 工具很重要
将 LLM 应用程序从概念验证推向生产需要解决这些系统与现实世界接触时出现的具体问题:
- 平衡多个 AI 提供商并知道何时路由到其他提供商
- 当出现问题时,查看 AI 管道内部发生的情况
- 管理多个应用程序中的数十或数百个提示
- 当使用模式意外改变时保持成本可控
- 建立保障措施,防止有害输出,同时仍然提供价值
合适的LLMOps工具能让您系统地应对这些挑战,而非一次性解决。如果操作得当,它可以将AI从实验性技术转变为可靠的业务基础架构,让团队能够满怀信心地在此基础上进行构建。
LLMOps 堆栈的核心组件
成熟的LLMOps 工具将多个关键系统整合在一起,确保您的 AI 应用程序平稳运行。编排和管道管理构成了其核心,引导数据流并连接应用程序中复杂的任务链。此外,强大的可观察性工具能够捕获每次 LLM 交互的日志、轨迹和指标,从而准确展示系统内部的运行情况。
随着使用量的增长,成本归因变得至关重要,它可以让您跟踪团队或项目的支出&