汽车销售行业行为识别

通过分析汽车销售行业的经营指标数据,构建偷漏税行为识别模型。使用数据提取、预处理、特征编码,然后应用svm和决策树算法进行建模。svm和决策树模型表现出高准确性,能有效识别偷漏税纳税人。
摘要由CSDN通过智能技术生成

1 汽车销售行业行为识别


背景

汽车销售行业在税收上存在少开发票金额、少记收入,上牌、按揭、保险不入账,不及时确认保修索赔款等情况,导致政府损失大量税收。汽车销售企业的部分经营指标数据能在一定程度上评估企业的偷漏税倾向。样本数据提供了汽车销售行业纳税人的各种属性和是否偷漏税标识,提取纳税人经营特征可以建立偷漏税行为识别模型,识别偷漏税纳税人。

分析方法的主要流程:
在这里插入图片描述
1.1 数据的提取

由于数据是现成的,所以免去了从后台抽取数据的过程,直接进行读取,代码如下:

# -*- coding: utf-8 -*-
import pandas as pd
data=pd.read_csv('4s.csv',index_col=u'纳税人编号')

1.2 数据预处理
观察样本数据可知无缺失数据,故不用考虑此类情况对分析结果的影响,我们在建模时需要将样本中的数据类型转化为数值型,因此要对销售类型和销售模式进行重新编码处理,输出特征进行二值化处理。将数据编写成为编码,数据输出将异常状态与正常状态变为0和1,使得能够被识别。代码如下:

#%%
data[u'输出']=pd.Categorical(data[u'输出']).codes
label =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值