密码学理论10:密钥管理和公钥革命

加密密钥分发

对称密码:

  • 依赖于秘密密钥的安全分发
  • 需要存储和管理大量密钥
  • 在开放/公共系统中遇到严重问题

部分解决方案:密钥分发中心(KDC)

某些服务器(密钥分发中心,KDC)将密钥“提供”给用户。它与每个用户共享一个秘密密钥(长期密钥),并协助他们安全地彼此共享会话密钥(短期密钥)。

 {M}K - 用 K 加密和验证的消息 M

  • 可以使用任何经过验证加密方案
  • K = (K0, K1):一个用于加密,一个用于认证
  • Encrypt-then-MAC 是首选方法

Needham Schreoder 1972

 ——攻击:假设旧会话密钥 Kold 被对手泄露

B 无法判断密钥是否新鲜:

 ——Kerboros 使用时间戳来保证密钥的新鲜度

  •  如果用户例如在一家公司工作,则可行
  • 用户仅与 KDC 共享密钥
  • 当用户发起通信时,KDC 生成新的新密钥(称为会话密钥)

缺点:

  • 在互联网上是行不通的
  • 依赖于 KDC 的诚实
  • 谁可以实施受信任的 KDC?
  • KDC 需要永久可用
  • KDC 存在单点故障问题

公钥密码方案

Diffie-Hellman (-Merkle) KE 协议:

 目标:Alice和Bob想要共享秘密,使窃听者无法知道

安全性定义【experiment】:

 如果对于每个 PPT 敌手 A:

 则密钥交换方案\Pi是存在窃听者的情况下安全的。

定理:如果 DDH 问题相对于 G 是困难的,那么 Diffie-Hellman 密钥交换协议 Π 在存在窃听者的情况下是安全的(相对于实验)。

如果存在主动的敌手:中间人攻击

 抵抗中间人攻击:认证KE-AKE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值