AtCoder Grand Contest 004 B Colorful Slimes 思维 + dp

思维+dp的一道题。

题意:有连续颜色1-N的史莱姆,可以花费a[i]的时间获得一个i颜色的史莱姆,也可以是魔法花费x的时间,让拥有的史莱姆颜色i变成i+1(n+1->1)。问最少需要多少时间,能获得所有颜色的史莱姆?

思路:这个题可以这样入手,需要第i个颜色的史莱姆,可以是直接获得第i个颜色的史莱姆,花费a[i]的时间,也可以获得i-m的颜色的史莱姆,花费a[i-m]+m*x的时间。

由于n+1->1,简单处理一下,使用a[i+n] = a[i],可以解决环的问题。

b[i][k]意思是使用k次咒语操作所用时间。

dp的递推式是:b[i][j] = min(b[i][j-1], a[j]);第i个史莱姆的获取要花费时间a[j]或者b[i][j-1]+x *k。

咒语可以年0-n-1次,所以sp表示咒语,循环从0-n-1:计数时cur = sp * x + b[i][i+sp];

然后循环所有颜色,取所有情况的最小值即可。

#include<bits/stdc++.h>

using namespace std;

const int N = 4010;

int b[N][N];
int a[N];

int main()
{
	int n, x;
	scanf("%d %d", &n, &x);
	for(int i = 0; i < n; i++)
	{
		scanf("%d", a + i);
		a[i + n] = a[i];
	}
	for(int i = 0; i < n + n; i++)
	{
		b[i][i] = a[i];
		for(int j = i + 1; j < n + n; j++)
		{
			b[i][j] = min(b[i][j-1], a[j]);
		}
	}
	long long ans = (long long) 1e18;
	for(int sp = 0; sp < n; sp++)
	{
		long long cur = sp * 1LL * x;
		for(int i = 0; i < n;i++)
		{
			cur += b[i][i+sp];
		}
		ans = min(ans, cur);
	}
	cout << ans << endl;
	return 0;
}

还有点东西,比如const N 代表数组大小,
比如全局变量单独拉出来,
比如 long long 的最大初始化 1e18,且进行乘法运算时不要忘记*1LL。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三元湖有大锦鲤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值