递归函数:调用自身的函数。
计算阶乘,它的递推式为:n!=n*(n-1)!
所以其递归函数为:
int fact(int n)
{
if(n == 0) return 1;
return n * fact(n - 1);
}
在递归函数中,必须有个停止的条件,例如n==0。如果没有停止条件,递归函数就停不下来了,程序当然也就崩溃了。
再来一个斐波那契数列的递归函数,由于其递推式为:a[n]=a[n-1]-a[n-2]。
所以:
int fib(int n)
{
if(n <= 1) return n;
return fib(n - 1) + fib(n - 2);
}
以上这两个递归函数形式很简单,一个终止条件,和一个返回的递推关系。得出递推式就很容易写出它的递归函数。
我测试了一下,在n=30的时候可以0.03秒左右计算出来结果,但当n=40的时候需要0.9秒左右计算出来结果,当n=50的时候,还没有出来结果……
这说明这个递归函数的时间复杂度要命,简单分析一下,n=10时,fib(10)分成fib(9)和fib(8),其中fib(9)分成fib(8)和fib(7),fib(8)分成fib(7)和fib(6)……指数级的时间复杂度,结果还是要命。
哎,有没有发现点东西,fib(9)中计算了fib(8)和fib(7),fib(8)中的fib(7)还需要计算?甚至fib(8)还需要计算?
优化的方向有了,使用空间换取时间,将计算结果记录下来,如果使用,不必重新算,直接拿过来用。
这就是记忆化搜索,也是动态规划的想法,看一下代码:
int memo[MAX_N + 1];
int fib(int n)
{
if(n <= 1) return n;
if(memo[n] != 0) return memo[n];
return memo[n] = fib(n - 1) + fib(n - 2);
}
刚才的n=50,经过69秒计算了出来,使用记忆化搜索的优化去试一试,0.02秒!花费50个int的空间,换取一分钟的时间,这生意也太美好了。