动态规划法3—矩阵链乘法

动态规划法3—矩阵链乘法

        对于给定的几个矩阵,求计算这几个矩阵相乘时进行最少次相乘的运算顺序,这类问题就称为矩阵链乘法

        当l\times m的矩阵A和m\times n的矩阵B相乘后得到矩阵C,C中各元素为:

        c_{ij}=\sum_{k=1}^{m} a_{ik} b_{kj}

        矩阵A和矩阵B进行的乘法运算次数为l\times m\times n

        接下来分析多个矩阵的乘法,比如计算M_{1}M_{2}M_{3}M_{4}M_{5}M_{6},就有多种计算顺序,这些计算顺序得出的结果相同,但是进行的乘法运算次数却不相同。如果检查所有的计算顺序,那么算法复杂度会达到O(n!),显然不可能实现。

        但是这个问题可以分割成更小的局部问题,所以可以使用之前学到的动态规划法。

         M_{1}M_{2}只有一种计算方法,M_{2}M_{3} 也是一种计算方法,这些相当于已知的结果被存储起来,在需要时可以直接调用,比如求M_{1}M_{2}M_{3} 就是计算(M_{1}M_{2})M_{3} 和M_{1}(M_{2}M_{3})哪一种计算次数更少,这时当再次遇到M_{1}M_{2}M_{3} 就可以直接调用刚才得到的计算次数。

        假设M_{i} 的行为p_{i-1}列为p_{i} 那么:

(M_{1}M_{2})M_{3}=M_{1}M_{2}+M_{3}+p_{0}*p_{2}*p_{3}

M_{1}(M_{2}M_{3})=M_{1}+M_{2}M_{3}+p_{0}*p_{1}*p_{3}

        所以综上,M_{1}M_{2}M_{3}M_{4}M_{5}M_{6} 的最优解就是下列式子中的最小值:

(M_{1})M_{2}M_{3}M_{4}M_{5}M_{6}

(M_{1}M_{2})M_{3}M_{4}M_{5}M_{6}

(M_{1}M_{2}M_{3})M_{4}M_{5}M_{6}

(M_{1}M_{2}M_{3}M_{4})M_{5}M_{6}

(M_{1}M_{2}M_{3}M_{4}M_{5})M_{6}

        为了方便计算假设:

m[i][j]表示计算M_{i}M_{i+1}\cdots M_{j}所需的最小次数
p[n]用来存储矩阵的行列数,M_{i} 的行为p_{i-1}列为p_{i} 

        计算m[i][j]:

m[i][j]
0i=j
min_{i\leqslant k\leqslant j} (m[i][k]+m[k+1][j]+p[i-1]\times p[k]\times p[j])i<j
void matrixchainmultiplication() {

	for (int i = 1; i <= n) {
		m[i][i] = 0;
	}

	for (int l = 2; l <= n; l++) {    //三重循环
		for (int i = 1; i < n - l + 1; i++) {
			int j = i + l - 1;
			m[i][j] = inf;
			for (int k = i; k <= j - 1; k++) {
				m[i][j] = min(m[i][j], m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]);
			}
		}
	}
}

        完整的代码如下:

#include<iostream>
using namespace std;
#define N 100

int main() {

	int n, p[N],m[N][N];

	cin >> n;

	for (int i = 1; i <= n; i++) {
		cin >> p[i - 1] >> p[i];
	}

	for (int i = 1; i <= n;i++){
		m[i][i] = 0;
	}

	for (int l = 2; l <= n; l++) {
		for (int i = 1; i <= n - l + 1; i++) {
			int j = i + l - 1;
			m[i][j] = (1 << 21);
			for (int k = i; k <= j - 1; k++) {
				m[i][j] = min(m[i][j], m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]);
			}
		}
	}

	cout << m[1][n] << endl;

	return 0;
}

        算法矩阵的数量l从2增加到n,对于每个数量要通过i和j来指定范围,在此范围里还要改变k,三重循环,所以整个算法的复杂度为O(n^{3})。


读《挑战程序设计竞赛》第三十天(侵删)2021.3.31

( 2021.7.14 第一次修改)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值