概率论与数理统计第一章

本文介绍了概率论中的基本概念,包括古典概型下的二项分布(放回抽样)和超几何分布(不放回抽样),以及条件概率的应用,如全概率公式和贝叶斯公式。通过这些基础理论,读者可以更好地理解和解决实际问题中涉及的概率计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、古典概型

1、二项分布(放回抽样)

在这里插入图片描述

2、超几何分布(不放回抽样)

在这里插入图片描述

二、条件概率

1.全概率公式(用于A事件的概率不易被得知时)

在这里插入图片描述

2.贝叶斯公式(用于求得在A事件的发生下,某一事件发生的概率)

在这里插入图片描述

关于概率论数理统计第一章公式总结如下: ### 随机事件及其概率的基本概念 - **样本空间** $\Omega$: 实验的所有可能结果组成的集合。 - **随机事件**: 样本空间中的一个子集,通常用大写字母 A, B, C 等表示。 - **必然事件**: 总是发生的事件,等于整个样本空间$\Omega$。 - **不可能事件**: 绝不会发生的事件,记作空集$\emptyset$。 - **互斥事件(A 和 B)**: 若两个事件没有共同的结果,则称为互斥事件。即 $A \cap B = \emptyset$ - **对立事件($\bar{A}$ 或者 $A^c$)**: 对于任意事件A,它的对立事件是指不属于A的所有元素组成的新事件。 ### 概率公式的定义及性质 - **非负性**: 对任何事件A的概率P满足 $0 \leq P(A) \leq 1$. - **归一化条件**: 必然事件的概率为1,即 $P(\Omega)=1$;不可能事件的概率为0,即 $P(\emptyset)=0$。 - **有限可加性/完全可加性**: 如果有两个或者更多的互斥事件$A_i$, 则这些事件之和的概率等于各事件概率之和。对于一系列互斥事件${A_1, A_2,...,A_n}$, $$P(A_1 + A_2 + ...+ A_n) = P(A_1)+P(A_2)+...+P(A_n).$$ - **逆事件的概率**: 对立事件的概率加上原事件的概率总和为1,即 $P(A) + P(\bar{A})=1$。 - **差事件的概率**: 当B⊆A时,有 $P(A-B) = P(A) - P(B)$。 - **乘法原理**: 计算复合实验中不同阶段选择的方法总数。如果有m种方式做某件事并且n种方式做另一件不同的事,则共有$m*n$种方式完成这两件事。 - **古典概型计算公式**: 设E是一个等可能性的随机试验,S是对应的样本空间,含有N个基本事件,其中有利场合含M个基本事件,则任取一个基本事件属于有利场合的概率为: $$P=\frac{\text{有利情况的数量}}{\text{所有可能出现的情况数量}}=\frac{M}{N}.$$ 以上是一些基础的概念以及相关的公式,在更深入的学习过程中还会遇到条件概率、全概率公式、贝叶斯定理等内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值