目录
Think Globally, Fit Locally. 选取的邻居数会影响 LLE 的结果
感谢B站up主搬运的课程:
【李宏毅2020机器学习深度学习(完整版)国语】 https://www.bilibili.com/video/BV1JE411g7XF/?share_source=copy_web&vd_source=262e561fe1b31fc2fea4d09d310b466d
Manifold Learning 流形学习
【一种机器学习方法,用于将高维数据映射到低维空间,以便更好地理解和可视化数据的内在结构和关系】
在上一节中,我们也有提到, PCA 是线性的,无法对这样在三维空间中卷曲的“二维”平面处理。
我们注意到在这样的卷曲在高维空间中的低维面直接取 euclidean distance 欧氏距离或许是不对的(如上图所示),或许更近的点并没有更远的点更相似。
Manifold Learning 做的事情就是将其展开(非线性地降维),摊平再做欧氏距离才是合理的。
Locally Linear Embedding LLE
像 LLE 这种方法,就算不知道 、 怎么表示,只知道 也可以求得 、
Think Globally, Fit Locally. 选取的邻居数会影响 LLE 的结果
Laplacian Eigenmaps 拉普拉斯特征映射
【是一种降维算法】
具体参考
Semi-supervised Learning 中的 Graph-based Apporoach
李宏毅2020机器学习 【学习笔记】 P22Semi-supervised learning__bh的博客-CSDN博客
如果将该方法拓展到 Unsupervised Learning 中
直接让 最小的话,直接无脑取 即可(因为 Semi-supervised 中 labeled data 的存在,不会出现这样的情况),所以需要对 加上约束条件。
像这样找出 之后,再做 Clustering ,这样的方法叫做 Spectral clustering 谱聚类
T-SNE
前面的方法只假设了相似的点要在一起,没有假设不相似的点要分开,就如同图中的 LLE 结果都挤在一堆
都归一化可以忽视高维表示 和低维表示 尺度的差距
距离较远的点会拉得更远