李宏毅2020机器学习 【学习笔记】 P57 Unsupervised Learning:Neighbor Embedding

目录

Manifold Learning 流形学习

Locally Linear Embedding LLE

Think Globally, Fit Locally. 选取的邻居数会影响 LLE 的结果

Laplacian Eigenmaps 拉普拉斯特征映射

T-SNE


感谢B站up主搬运的课程:

【李宏毅2020机器学习深度学习(完整版)国语】 https://www.bilibili.com/video/BV1JE411g7XF/?share_source=copy_web&vd_source=262e561fe1b31fc2fea4d09d310b466d


Manifold Learning 流形学习

【一种机器学习方法,用于将高维数据映射到低维空间,以便更好地理解和可视化数据的内在结构和关系】

在上一节中,我们也有提到, PCA 是线性的,无法对这样在三维空间中卷曲的“二维”平面处理。

我们注意到在这样的卷曲在高维空间中的低维面直接取 euclidean distance 欧氏距离或许是不对的(如上图所示),或许更近的点并没有更远的点更相似。

Manifold Learning 做的事情就是将其展开(非线性地降维),摊平再做欧氏距离才是合理的。

Locally Linear Embedding LLE

像 LLE 这种方法,就算不知道 x_i 、 x_j 怎么表示,只知道 w_{ij} 也可以求得 z_i 、 z_j 

Think Globally, Fit Locally. 选取的邻居数会影响 LLE 的结果

Laplacian Eigenmaps 拉普拉斯特征映射

【是一种降维算法】

具体参考

Semi-supervised Learning 中的 Graph-based Apporoach

李宏毅2020机器学习 【学习笔记】 P22Semi-supervised learning__bh的博客-CSDN博客

如果将该方法拓展到 Unsupervised Learning 中

直接让 S 最小的话,直接无脑取 z^i=z^j=0 即可(因为 Semi-supervised 中 labeled data 的存在,不会出现这样的情况),所以需要对 z 加上约束条件。

像这样找出 z 之后,再做 Clustering ,这样的方法叫做 Spectral clustering 谱聚类

T-SNE

前面的方法只假设了相似的点要在一起,没有假设不相似的点要分开,就如同图中的 LLE 结果都挤在一堆

都归一化可以忽视高维表示 x 和低维表示 z 尺度的差距

距离较远的点会拉得更远

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值