前言
分类问题是机器学习中最常见的任务之一,而逻辑回归是处理二元分类问题的一种强大且直观的技术。本篇博文将深入探讨如何在Scikit-learn中实现逻辑回归分类器,并将其应用于一个实际的分类问题。
逻辑回归简介
逻辑回归,尽管名字中带有“回归”,实际上是一种分类方法。它预测的是给定输入属于某个类别的概率。逻辑回归通过使用逻辑函数(通常是sigmoid函数)将线性回归的输出映射到0和1之间,从而进行分类。
设置Scikit-learn环境
首先,确保你已安装了Scikit-learn库。如果尚未安装,可以通过以下命令进行安装:
pip install scikit-learn
选择数据集
在本示例中,我们将使用Scikit-learn内置的乳腺癌数据集。这是一个二元分类问题,目标是根据乳腺癌细胞的特征来预测肿瘤是良性还是恶性的。
from sklearn.datasets