实现方法(1)
用编号最小的元素标记所在集合
定义一个数组Set[1…n],其中Set[i]表示元素 i 所在的集合;**
不相交集合:{1,3,7},{4},{2,5,9,10},{6,8}
//效率分析,扁平化算法
O(1)
find(x){ //查找老大
return Set[x]; //自己存的是自己小组的老大
}
O(N)
Mergel(a,b){ //合并两个小组,并以数字小的组长为总的组长
i=min(a,b);
j=max(a,b);
for(k=l;k<=N;k++){
if(Set[k]==j)
Set[k]=i;
}
}
每个集合用一颗树“有根树”表示
定义数组Set[1. .n]
Set[i]=i,则i表示本集合,并十几个对应树的根
Set[i]=j,若j不等于i,则j是i的父节点
//树状结构
// 最坏是O(N) {最坏是形成链表了,但是单链表出现 情况很少}
find2(x){ //查找老大
r=x;
while(Set[r]!=r)//只有老大装的是自己,其它装的是自己的上一级领导
r=Set[r];
return r;
}
// O(1)
merge2(a,b){//合并操作,只需改变其中的老大就行。
Set[a]=b;
}
避免最坏情况
例题:
#include<stdio.h>
int bin[1002];
int findx(int x)
{
int r=x;
while(bin[r]!=r)
r=bin[r];
return r;
}
void merge(int x,int y)
{
int fy,fx;
fx=findx(x);
fy=findx(y);
if(fx!=fy)
bin[fx]=fy;
}
int main()
{
int n,m,i,x,y,count;
while(scanf("%d",&n),n)
{
for(i=1;i<=n;i++)
bin[i]=i;
for(scanf("%d",&m);m>0;m--)
{
scanf("%d%d",&x,&y);
merge(x,y);
}
for(count=-1;i=1;i<=n;i++)
if(bin[i]==i) count++;
printf("%d\n",count);
}
return 0;
}
经典应用——最小生成树
N个顶点有(N-1)条边是树
边的权值和最小称为最小生成树。
解决最小生成树
理论基础:MST性质;
至少存在一颗最小生成树,包含最小权值边;
Kruskal算法步骤
一、把原始的N个节点看成N个独立子图;
二、每次选取当前最短的边,看两端是否属于不同的子图;若是,加入;否则,放弃;
三、循环操作该步骤,直到有N-1条边;
优化例题(加速了找爸爸的节奏)
例题A - Bear and Friendship Condition
#include<stdio.h>
int count[150009];
int pre[150009];
int find(int x){
/*int r=x;
while(pre[r]!=r)
r=pre[r];
return r;
*/
if(x==pre[x]) return x;//有加速
return pre[x]=find(pre[x]);//好像有点嵌套了
}
void merge(int j,int k){
int fj=find(j);
int fk=find(k);
if(fj!=fk){
pre[fj]=fk;
}
}
int main(){
int n,m,i,j,k;
long long countt;
scanf("%d%d",&n,&m);
for(i=1;i<n;i++){
pre[i]=i;
}
for(i=0;i<m;i++){
scanf("%d",&j);
scanf("%d",&k);
merge(j,k);
}
for(i=0;i<n;i++){
count[find(i)]++;
}
countt=0;
for(i=0;i<n;i++){
countt=countt+1LL*count[i]*(count[i]-1)/2;
} //如果不用这个“1LL”就会爆 int ;
//分成一块一块的,每一块的每两个点都会相互连接
//找到最大的父节点 就可以用这个搞成计算度数;
if(m==countt) printf("YES");
else printf("NO");
return 0;
}