并查集&&最小生成树

实现方法(1)

用编号最小的元素标记所在集合
定义一个数组Set[1…n],其中Set[i]表示元素 i 所在的集合;**

不相交集合:{1,3,7},{4},{2,5,9,10},{6,8}

//效率分析,扁平化算法
    O(1find(x){        //查找老大
   return Set[x];  //自己存的是自己小组的老大
   }
   O(N)
   Mergel(a,b){   //合并两个小组,并以数字小的组长为总的组长 
     i=min(a,b);
     j=max(a,b);
     for(k=l;k<=N;k++){
       if(Set[k]==j)
           Set[k]=i;
      }
    }

每个集合用一颗树“有根树”表示
定义数组Set[1. .n]
Set[i]=i,则i表示本集合,并十几个对应树的根
Set[i]=j,若j不等于i,则j是i的父节点

在这里插入图片描述

  //树状结构
 // 最坏是O(N)    {最坏是形成链表了,但是单链表出现	情况很少}
  find2(x){   //查找老大
     r=x;
     while(Set[r]!=r)//只有老大装的是自己,其它装的是自己的上一级领导
         r=Set[r];
         return r;
   }
 //  O(1)
   merge2(a,b){//合并操作,只需改变其中的老大就行。
   Set[a]=b;
   }

避免最坏情况
在这里插入图片描述
优化后
例题:

#include<stdio.h>
int bin[1002];
int findx(int x)
{
   int r=x;
   while(bin[r]!=r)
       r=bin[r];
       return r;
}
void merge(int x,int y)
{
   int fy,fx;
   fx=findx(x);
   fy=findx(y);
   if(fx!=fy)
     bin[fx]=fy;
}
int main()
{
   int n,m,i,x,y,count;
   while(scanf("%d",&n),n)
   {
      for(i=1;i<=n;i++)
         bin[i]=i;
       for(scanf("%d",&m);m>0;m--)
       {
       scanf("%d%d",&x,&y);
       merge(x,y);
       }
       for(count=-1;i=1;i<=n;i++)
           if(bin[i]==i) count++;
        printf("%d\n",count);
    }
    return 0;
}

经典应用——最小生成树
N个顶点有(N-1)条边是树

边的权值和最小称为最小生成树。
在这里插入图片描述
解决最小生成树
理论基础:MST性质;
至少存在一颗最小生成树,包含最小权值边;

Kruskal算法步骤
一、把原始的N个节点看成N个独立子图;
二、每次选取当前最短的边,看两端是否属于不同的子图;若是,加入;否则,放弃;
三、循环操作该步骤,直到有N-1条边;

优化例题(加速了找爸爸的节奏)
例题A - Bear and Friendship Condition

#include<stdio.h>
int count[150009];
int pre[150009];
int find(int x){
    /*int r=x;
    while(pre[r]!=r)
          r=pre[r];
    return r; 
    */  
    if(x==pre[x]) return x;//有加速 
    return pre[x]=find(pre[x]);//好像有点嵌套了 
}
void merge(int j,int k){
	int fj=find(j);
	int fk=find(k);
	if(fj!=fk){
		pre[fj]=fk;
	}
}
int main(){
	int n,m,i,j,k;
	long long countt;
	scanf("%d%d",&n,&m);
	for(i=1;i<n;i++){
	    pre[i]=i;	
	} 
	for(i=0;i<m;i++){
		scanf("%d",&j);
		scanf("%d",&k);
	     merge(j,k);
	}
     for(i=0;i<n;i++){
        count[find(i)]++;	
     }
     countt=0;
     for(i=0;i<n;i++){
     	countt=countt+1LL*count[i]*(count[i]-1)/2;
     }      //如果不用这个“1LL”就会爆 int ;
	      //分成一块一块的,每一块的每两个点都会相互连接
		 //找到最大的父节点 就可以用这个搞成计算度数; 
	if(m==countt)   printf("YES");
	else printf("NO");
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值