前段时间找到了Cemotion这个NLP第三方库,发现它准确率高的惊人,Cemotion算法的优点在于准确率高、调用方便,缺点是运行较慢(相比其他NPL算法)、环境配置(自动安装TensorFlow环境,对python版本有要求)
目录
总结
前言
介绍一下,Cemotion同Snownlp等NLP算法一样可以在Python中实现,主要拿来用于中文情感倾向分析,可以说是很专注了。Cemotion的模型原理是基于循环神经网络训练,会为中文文本返回 0~1之间的情感倾向置信度,当我们调用Cemotion库的时候会自动安装TensorFlow环境,是Google的开源深度学习框架,里边有大量的中文训练集-big_Chinese_Words_Map.dict。
在本文中,将重点介绍Cemotion中的情感分析,python版本:3.68,Cemotion版本:0.3.3,供大家参考。
一、Cemotion库的安装
1.Pycharm安装法
文件菜单栏中点击设置,然后选择项目中的解释器,点击“+”号按钮输入Cemotion即可查询下载,现在最新版本应该是0.3.3。

2.pip安装方法
也可在终端pip下载:
pip install snownlp
二、验证Cemotion情感分析准确率
首先还是准备一下测试数据,这次我从京东采集了130条赣南脐橙的在线评论文本,然后人工标注每条评论的情感正负性,情感正负性就是指该条评论代表了评论者的何种态度,其中-1表示贬义,1表示褒义。以下是样例:


本文介绍了Cemotion库在情感分析中的应用,其高准确率96%超越SnowNLP,但运行速度较慢。通过实测京东评论,展示Cemotion的安装与使用方法,以及如何利用其进行大规模情感分析。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=124710052&d=1&t=3&u=4ed47f38fc994384a1ab239fd8b39945)
740

被折叠的 条评论
为什么被折叠?



