原题链接:
https://ac.nowcoder.com/acm/contest/20278/I
这道题本来是周常训练时碰到的。听周队说是容斥原理,想以后学了数学在做,碰巧刚刚学了容斥,就来把这题给A了。(听说用莫比乌斯反演也可以做,等学会莫反再补吧)
题目:
输出样例1:
4
2 3 6 2
输出样例1:
9
输出说明:
共有 9 个方案:{1},{2},{3},{4},{1,3},{2,3},{3,4},{1,4},{1,3,4}。其中以上为所选数的下标。
题解:
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e5+5,mod=1e9+7;
LL a[N],fac[N],sum[N];
LL ans=0;
void init()
{
LL num=1;
for(int i=1;i<N;i++)
{
num=num*2%mod;
fac[i]=((num-1)%mod+mod)%mod;
}
//cout<<fac[3]<<endl;
}
vector<int> f(int x)
{
vector<int> vec;
for(int i=2;i<=x/i;i++)
{
if(x%i==0)
{
vec.push_back(i);
while(x%i==0)x/=i;
}
}
if(x>1)vec.push_back(x);
return vec;
}
void add(vector<int>vec)
{
int len=vec.size();
LL res=0;
if(len)res=1;
for(int i=1;i<(1<<len);i++)
{
int tmp=0,num=1;
for(int j=0;j<len;j++)
{
if(i&(1<<j))
{
tmp++;
num*=vec[j];
}
}
//cout<<num<<" ";
if(tmp%2) res=(res+fac[sum[num]])%mod;
else res=(res-fac[sum[num]])%mod;
sum[num]++;
}
//cout<<res<<endl;
ans=(ans+res)%mod;
//cout<<ans<<endl;
}
int main()
{
int n;
init();
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
vector<int>vec;
scanf("%lld",&a[i]);
vec=f(a[i]);
add(vec);
}
printf("%lld",(ans%mod+mod)%mod);
}