希尔排序算法
1.代码模板
// 希尔排序(Shell Sort)
void ShellSort(SqList *L)
{
int i, j;
int increment = L->length; // 先让增量初始化为序列的长度
do {
increment = increment / 3 + 1; // 计算增量的值
for (i = increment + 1; i <= L->length; i ++ ) {
if (L->arr[i] < L->arr[i - increment]) { // 如果L->[i]需要插入有序增量子表
L->arr[0] = L->arr[i]; // 暂存在哨兵位
for (j = i - increment; j > 0 && L->arr[0] < L->arr[j]; j -= increment) { // 遍历增量子表,寻找插入位置
L->arr[j + increment] = L->arr[j];
}
L->arr[j+increment] = L->arr[0]; // 插入
}
}
} while (increment > 1);
}
2.算法介绍
希尔排序,又叫缩小增量排序,算法属于插入类排序的进阶算法,采取跳跃分割的策略,将关键字较小的元素跳跃式的往前挪,大大减小了交换比较的次数。使得序列整体基本有序 ,即大的元素基本在后面,小的元素基本在前面,不大不小的元素基本在中间。
希尔排序的关键在于将序列中相隔某个“增量”的元素组成一个子序列,且序列的最后一个增量必须为1,这样才能保证最后的结果是有序且正确的。但增量如何选择为最佳,至今仍无定论。且由于元素是跳跃式移动的,所有希尔排序是一个不稳定的排序算法,其时间复杂度受到增量选择的影响,最好为O(n^1.3) , 最坏为O(n*n)。
3.实例
#include <iostream>
using namespace std;
const int N = 100;
typedef struct
{
int arr[N]; // 存储待排序的序列
int length; // 存储序列的长度
} SqList;
void ShellSort(SqList *L)
{
int i, j;
int increment = L->length;
do {
increment = increment / 3 + 1;
for (i = increment + 1; i <= L->length; i ++ ) {
if (L->arr[i] < L->arr[i - increment]) {
L->arr[0] = L->arr[i];
for (j = i - increment; j > 0 && L->arr[0] < L->arr[j]; j -= increment)
L->arr[j + increment] = L->arr[j];
L->arr[j + increment] = L->arr[0];
}
}
} while (increment > 1);
}
int main()
{
SqList L;
L.arr[1] = 50;
L.arr[2] = 10;
L.arr[3] = 90;
L.arr[4] = 30;
L.arr[5] = 70;
L.arr[6] = 40;
L.arr[7] = 80;
L.arr[8] = 60;
L.arr[9] = 20;
L.length = 9;
ShellSort(&L);
for (int i = 1; i <= L.length; i ++ )
cout << L.arr[i] << " ";
}
注:内容参考《大话数据结构》