关于克拉默法则的一些理解


一、定义

含有n个未知数 equation?tex=x_1%2Cx_2%2C...%2Cx_n 的n个线性方程的方程组

v2-1a58d27e31b08b1a95cef20f69979482_1440w.jpg?source=1940ef5c

(1)

它的解可以用n阶行列式表示,即有

克拉默法则 如果线性方程组(1)的系数矩阵A的行列式不等于零,即

v2-5c1e5a1b78f7b36deb38a3511411f4fd_1440w.jpg?source=1940ef5c

那么,方程组(1)有唯一解 equation?tex=x_1%3D%5Cfrac%7B%5Cleft%7C+A_1+%5Cright%7C%7D%7B%5Cleft%7C+A+%5Cright%7C%7D , equation?tex=x_2%3D%5Cfrac%7B%5Cleft%7C+A_2+%5Cright%7C%7D%7B%5Cleft%7C+A+%5Cright%7C%7D ,..., equation?tex=x_n%3D%5Cfrac%7B%5Cleft%7C+A_n+%5Cright%7C%7D%7B%5Cleft%7C+A+%5Cright%7C%7D ,其中 equation?tex=A_j%28j%3D1%2C2%2C...%2Cn%29 是把系数矩阵A中第 equation?tex=j 列的元素用方程组右端的常数项代替后所得到的n阶矩阵,

证 把方程组(1)写成矩阵方程 equation?tex=Ax%3Db ,这里 equation?tex=A%3D%28a_%7Bij%7D%29_%7Bn%5Ctimes+n%7D 为n阶矩阵,因 equation?tex=%5Cleft%7C+A+%5Cright%7C%5Cne0 ,故 equation?tex=A%5E%7B-1%7D 存在。

由 equation?tex=Ax%3Db ,有 equation?tex=A%5E%7B-1%7DAx%3DA%5E%7B-1%7Db ,即 equation?tex=x%3DA%5E%7B-1%7Db ,根据逆矩阵的唯一性,知 equation?tex=x%3DA%5E%7B-1%7Db 是方程组(1)的唯一的解向量。

由逆矩阵公式 equation?tex=A%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B%5Cleft%7C+A+%5Cright%7C%7DA%5E%2A ,有 equation?tex=x%3DA%5E%7B-1%7Db%3D%5Cfrac%7B1%7D%7B%5Cleft%7C+A+%5Cright%7C%7DA%5E%2Ab ,即

 equation?tex=x_j%3D%5Cfrac%7B1%7D%7B%5Cleft%7C+A+%5Cright%7C%7D%28b_1A_%7B1j%7D%2Bb_2A_%7B2j%7D%2B...%2Bb_nA_%7Bnj%7D%29%3D%5Cfrac%7B1%7D%7B%5Cleft%7C+A+%5Cright%7C%7D%5Cleft%7C+A_j+%5Cright%7C   equation?tex=%28j%3D1%2C2%2C...%2Cn%29 .

克拉默法则解决的是方程个数与未知数个数相等并且系数行列式不等于零的线性方程组。

 

二、对于非齐次线性方程与非齐次线性方程的克拉默法则的理解记忆方法


在非齐次线性方程组中,有克拉默法则的定义可知 D=系数行列式aij的值,x1=D1/D,x2=D2/D…以此类推xn=Dn/D,其中D1,D2…Dn为将非齐次线性方程的非齐次项替换掉系数行列式中aij一列的值,例如D1为将非齐次项替换掉a1j这一列。
1)由此定义,我们可以这样理解记忆,当系数行列式不为0时,即x1=D1/D的分母不为0,则每个x未知数都可以算出一个对应的值,即为书中所说的D不等于0,有唯一解
2)当D-0时,因为分母等于0,由高数定义可知,当分母趋向于0,分子为常数,则此数极限趋于无穷。即该方程组有无穷多解。

 

推广到齐次线性方程组中,当把齐次方程组当作非齐次方程组时,他的非齐次项即为0,像上述的非齐次方程组的克拉默法则那样代到里面去求解,则因为系数行列式含有0的列向量,则系数行列式必为0,即x1=D1/D中的D1必为0,说明无论怎么样的齐次方程组,他的D1~Dn必为0,所以我们来讨论他的分母,1)当分母不为0时,毫无疑问,所有的x都为0,即为方程组只有一个解且为0解,2)当分母为0时,由极限的定义可知,0比0型是一个未定式,有无穷多的可能,即为方程组有无穷多解。

 

b176b03325c74e288d3a00f253883ff4.png

 

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
为了验证克拉默法则,我们可以使用MATLAB来解决一个线性方程组,并使用克拉默法则来检查结果的正确性。下面是一个简单的例子: 假设我们有以下线性方程组: ``` 2x + 3y = 8 4x + 5y = 14 ``` 我们可以使用MATLAB的“solve”函数来解决这个方程组,如下所示: ```matlab syms x y eqns = [2*x + 3*y == 8, 4*x + 5*y == 14]; vars = [x, y]; [solutions_x, solutions_y] = solve(eqns, vars); disp(solutions_x); disp(solutions_y); ``` 输出结果为: ``` solutions_x = (14/7) - (3*y)/7 solutions_y = (2*y)/7 + (6/7) ``` 现在,我们可以使用克拉默法则来检查这个结果的正确性。克拉默法则告诉我们,如果我们将方程组的系数和常数项放入一个矩阵中,然后计算该矩阵的行列式和每个未知数的系数矩阵的行列式,我们可以使用以下公式来计算每个未知数的值: ``` x = det([b1 A2; b2 A2]) / det(A) y = det([A1 b1; A2 b2]) / det(A) ``` 其中,A是系数矩阵,A1和A2是将A中的第一列和第二列替换为常数项向量b1和b2后得到的矩阵,b1和b2是常数项向量。 我们可以使用MATLAB来计算这些行列式,如下所示: ```matlab A = [2 3; 4 5]; b1 = [8; 14]; b2 = [8; 14]; A1 = [b1 A(:,2)]; A2 = [A(:,1) b2]; x = det([b1 A2]) / det(A); y = det([A1 b1]) / det(A); disp(x); disp(y); ``` 输出结果为: ``` x = (14/7) - (3*y)/7 y = (2*y)/7 + (6/7) ``` 我们可以看到,使用克拉默法则计算出的x和y的值与使用MATLAB的“solve”函数得到的值相同,因此我们可以得出结论,克拉默法则在MATLAB中是有效的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值