巴西电商数据分析

本文基于巴西电商数据集,利用python、MYSQL和tableau进行多维度分析,包括订单状态、销售表现、用户行为和支付偏好等。发现11月为网购高峰期,1月低谷,22%的品类贡献80%销售额,用户主要在9:00-23:00下单,复购率2.75%,信用卡支付最常见。建议优化产品结构,提高周末销量,缩短交付时间,增加用户黏性和复购率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写作背景:从kaggle上找了一份巴西电商数据集,结合python+MYSQL+tableau等分析工具,从多个维度对网站的各项指标进行分析,发现网站现存的问题并对网站提出优化建议。

文章结构如下:
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200313172125881.png?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3hpYW9jYWkxcHl0aG9u,size_16,color_FFFFFF,t_70)

1、获取/理解数据

1.1获取数据

从kaggle上下载数据集,并读入python

    import pandas as pd
    df = pd.read_csv('Orders_merged.csv')
    df.head()

![在这里插入图片描述](https://img-blog.csdnimg.cn/20200313172853664.png?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3hpYW9jYWkxcHl0aG9u,size_16,color_FFFFFF,t_70)
在这里插入图片描述
数据共有 96478 行, 38

1.2理解数据

数据来源 : 这是在Olist商店下订单的巴西电子商务公共数据集。 该数据集包含2016年至2018年在巴西多个市场上制作的10万张订单的信息。
它允许从多个维度查看订单:从订单状态,价格,付款和货运绩效到客户位置,产品属性以及最终由客户撰写的评论。这是真实的商业数据,已被匿名化。

数据链接:https://www.kaggle.com/jainaashish/orders-merged

字段说明 (共38个字段):

1、product_id:商品ID
2、seller_id:商家ID
3、order_id:订单ID
4、customer_id:订单对应的用户ID。订单数据集的键,每个订单都有一个唯一的customer_id。
5、order_status:订单状态
6、order_purchase_timestamp:下单时间
7、order_approved_at:付款审批时间
8、order_delivered_carrier_date:订单过账日期
9、order_delivered_customer_date:客户实际订单交货日期
10、order_estimated_delivery_date:订单预计交货日期
11、customer_unique_id:用户ID
12、customer_zip_code_prefix:客户邮政编码前5位
13、customer_city:客户所在城市
14、customer_state:客户所在的州
15、review_id:评论ID
16、review_score:评价得分,客户在满意度调查中给出的注释范围为1到5。
17、review_comment_title:评论标题(葡萄牙语)
18、review_comment_message:评论内容(葡萄牙语)
19、review_creation_date:发出满意度调查日期
20、review_answer_timestamp:客户满意度回复日期
21、payment_sequential:付款顺序,客户可以使用多种付款方式付款。
22、payment_type:付款方式
23、payment_installments:客户选择的分期付款数量
24、payment_value:交易金额
25、order_item_id:序号,用于标识同一订单中包含的商品数量。
26、price:商品价格
27、freight_value:运费,物品运费价值物品(如果订单包含多个物品,则运费价值将在物品之间分配)
28、seller_zip_code_prefix:卖家邮政编码前5位
29、seller_city:卖家所在城市
30、seller_state:卖家所在州
31、product_category_name:类别名称
32、product_name_lenght:产品名称长度
33、product_description_lenght:产品说明长度
34、product_photos_qty:产品照片数量
35、product_weight_g:产品重量单位g
36、product_length_cm:产品长度单位cm
37、product_height_cm:产品高度单位cm
38、product_width_cm:产品宽度单位cm

2、构建分析框架

![在这里插入图片描述](https://img-blog.csdnimg.cn/20200316213056602.png?x-oss-
process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3hpYW9jYWkxcHl0aG9u,size_16,color_FFFFFF,t_70)

3、数据清洗

    3.1选取子集(根据搭建的框架选取需要的字段,作为新的数据表)
    commerce_data = df[['product_id','seller_id','order_id
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值