目录
研究背景与目标
短时强降水(STR)具有突发性、局部性和短时效性,预报具有较大的挑战性,尤其是在强降水的分布零散、持续时间短的情况下。研究重点是如何结合ECMWF细网格模式和GRAPES模式,利用强降水的物理因子(如水汽、不稳定性、抬升等)进行有效的预报,并通过统计与模型检验分析其准确性和潜力。
研究方法
-
数据来源:
- 采用了2016至2018年6月至8月期间的ECMWF细网格、GRAPES模式和黑龙江省的822个自动气象站数据。
- 研究将强降水分为一般强降水(小时雨量 >20mm)和极端强降水(小时雨量 >40mm 或2小时雨量 >50mm)。
-
物理因子选择与预报方法:
- 水汽:使用了比湿、相对湿度、气柱含水量等因子,这些因子决定了降水的水汽供应。
- 不稳定性:通过中低层温差、位温差等因子来评估大气不稳定性。
- 抬升:通过散度、垂直上升速度、水汽通量散度等来描述空气的上升运动,这对强降水的发生至关重要。
- 分位数法和配料法:这些方法用于确定物理因子的阈值,预判降水潜势。
-
预报和检验方法:
- 使用了逐3小时的降水数据进行点对点和点对面检验。
- 在点对点检验中,通过评估漏报率和空报率来检验预报的准确性。
- 在点对面检验中,考虑了不同半径(如14km和40km)范围的降水预报效果。
结果与分析
-
强降水的影响因子:
- 论文指出,强降水不仅受各物理因子阈值的限制,还与这些因子之间的融合密切相关。
- 水汽相关的因子在夜间的阈值高于白天,而热力不稳定性白天高于夜间。
- 6月中上旬,水汽含量相关的因子阈值相对较低。
-
检验结果:
- 点对点检验:一般性强降水的空报率很高,特别是在6月,漏报率较低,但准确率较低。
- 点对面检验:通过使用14km和40km的半径进行检验,发现随着检验半径的增大,准确率有所提高。
- 极端强降水:在极端强降水的检验中,两种模式的准确率较低,尤其是在夜间,GRAPES模式的准确率较高。
-
预报误差的原因:
- 预报误差主要由以下因素引起:
- 模式本身的误差,分辨率限制导致无法捕捉到中小尺度的强降水系统。
- 强降水的局地性、突发性特征导致空报率较高,漏报率较低。
- 空间分析未考虑水平梯度,且时效误差较大。
- 物理因子的垂直和水平梯度分析密度不足,且未能及时同化雷达和自动站数据。
- 预报误差主要由以下因素引起:
结论
- 强降水的预报方法需要结合水汽、不稳定性和抬升等因子的分析,这些因子不仅需要满足各自的阈值,还需要在一定条件下相互融合才能有效预测强降水。
- 极端强降水的识别更加依赖于对积云对流的维持机制分析。
- 由于强降水的局地性和突发性,逐3小时的检验结果空报率很高,但整体检验结果随着预报半径的增加而有所提高。
- 在极端强降水的检验中,GRAPES模式相比ECMWF细网格模式表现较好。
总结
该研究提出的基于ECMWF细网格和GRAPES模式的短时强降水潜势预报方法,尽管在实际应用中仍面临一定的误差和挑战,但其结合了水汽、不稳定性和抬升等多个物理因子的分析,能够为短时强降水预报提供有力的支持