【AI气象强短强1】基于ECMWF细网格、GRAPES的短时强降水潜势预报和检验

目录

研究背景与目标

研究方法

结果与分析

结论

总结


研究背景与目标

短时强降水(STR)具有突发性、局部性和短时效性,预报具有较大的挑战性,尤其是在强降水的分布零散、持续时间短的情况下。研究重点是如何结合ECMWF细网格模式和GRAPES模式,利用强降水的物理因子(如水汽、不稳定性、抬升等)进行有效的预报,并通过统计与模型检验分析其准确性和潜力。

研究方法

  1. 数据来源

    • 采用了2016至2018年6月至8月期间的ECMWF细网格、GRAPES模式和黑龙江省的822个自动气象站数据。
    • 研究将强降水分为一般强降水(小时雨量 >20mm)和极端强降水(小时雨量 >40mm 或2小时雨量 >50mm)。
  2. 物理因子选择与预报方法

    • 水汽:使用了比湿、相对湿度、气柱含水量等因子,这些因子决定了降水的水汽供应。
    • 不稳定性:通过中低层温差、位温差等因子来评估大气不稳定性。
    • 抬升:通过散度、垂直上升速度、水汽通量散度等来描述空气的上升运动,这对强降水的发生至关重要。
    • 分位数法和配料法:这些方法用于确定物理因子的阈值,预判降水潜势。
  3. 预报和检验方法

    • 使用了逐3小时的降水数据进行点对点和点对面检验。
    • 在点对点检验中,通过评估漏报率和空报率来检验预报的准确性。
    • 在点对面检验中,考虑了不同半径(如14km和40km)范围的降水预报效果。

结果与分析

  1. 强降水的影响因子

    • 论文指出,强降水不仅受各物理因子阈值的限制,还与这些因子之间的融合密切相关。
    • 水汽相关的因子在夜间的阈值高于白天,而热力不稳定性白天高于夜间。
    • 6月中上旬,水汽含量相关的因子阈值相对较低。
  2. 检验结果

    • 点对点检验:一般性强降水的空报率很高,特别是在6月,漏报率较低,但准确率较低。
    • 点对面检验:通过使用14km和40km的半径进行检验,发现随着检验半径的增大,准确率有所提高。
    • 极端强降水:在极端强降水的检验中,两种模式的准确率较低,尤其是在夜间,GRAPES模式的准确率较高。
  3. 预报误差的原因

    • 预报误差主要由以下因素引起:
      1. 模式本身的误差,分辨率限制导致无法捕捉到中小尺度的强降水系统。
      2. 强降水的局地性、突发性特征导致空报率较高,漏报率较低。
      3. 空间分析未考虑水平梯度,且时效误差较大。
      4. 物理因子的垂直和水平梯度分析密度不足,且未能及时同化雷达和自动站数据。

结论

  • 强降水的预报方法需要结合水汽、不稳定性和抬升等因子的分析,这些因子不仅需要满足各自的阈值,还需要在一定条件下相互融合才能有效预测强降水。
  • 极端强降水的识别更加依赖于对积云对流的维持机制分析。
  • 由于强降水的局地性和突发性,逐3小时的检验结果空报率很高,但整体检验结果随着预报半径的增加而有所提高。
  • 在极端强降水的检验中,GRAPES模式相比ECMWF细网格模式表现较好。

总结

该研究提出的基于ECMWF细网格和GRAPES模式的短时强降水潜势预报方法,尽管在实际应用中仍面临一定的误差和挑战,但其结合了水汽、不稳定性和抬升等多个物理因子的分析,能够为短时强降水预报提供有力的支持

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值