度序列(degree sequence)以及特定图序列单图的构造算法

度的定义

The degree of a vertex v in a graph G ,denoted by $d_G(v)$ ,is the number of edges of $G$ incident with v ,each loop counting as two edges.(J.A.Bondy,Graph Theory)

图 G 中一个顶点 v定义为这个图中与v关联的边数,记作d_G(v),其中每个环作为两条边来计数。

有两个非常简单的结果:

(1)For any graph G,

\sum\limits_{v\in V}d(v)=2m\\ 

这就是握手定理(Handshaking Theorom)。证明留作练习()。

(2)In any graph,the number of vertices of odd degree is even.

证明:由握手定理可见,等式右侧必定是一个偶数。所以左侧求和也应得到一个偶数,这就说明度为奇数的点一定有偶数个。

度序列

若图 G有顶点 v_1,v_2,...,v_n,则序列(d(v_1),d(v_2),...,d(v_n))称为 G一个度序列(degree sequence)

d= (d_1,d_2,...,d_n)是一个非负整数的非增序列,则:

存在一个图有度序列d当且仅当 \sum\limits_{i=1}^{n}d_i 是偶数

证明:→由握手定理显然。

←取 n个相异的顶点v_1,v_2,...,v_n 。如果 d_i 为偶数,就给 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值