度的定义
The degree of a vertex in a graph
,denoted by
,is the number of edges of
incident with
,each loop counting as two edges.(J.A.Bondy,Graph Theory)
图 中一个顶点
的度定义为这个图中与
关联的边数,记作
,其中每个环作为两条边来计数。
有两个非常简单的结果:
(1)For any graph ,
这就是握手定理(Handshaking Theorom)。证明留作练习()。
(2)In any graph,the number of vertices of odd degree is even.
证明:由握手定理可见,等式右侧必定是一个偶数。所以左侧求和也应得到一个偶数,这就说明度为奇数的点一定有偶数个。
度序列
若图 有顶点
,则序列
称为
一个度序列(degree sequence)。
令d= 是一个非负整数的非增序列,则:
存在一个图有度序列d当且仅当
是偶数
证明:→由握手定理显然。
←取 个相异的顶点
。如果
为偶数,就给