PyTorch训练模型 nn.DataParallel后若在网络中进行某些扩展的操作则最后输出就会乘以显卡数量,应在训练函数中进行扩展操作。

如torch.mean(tensor).expand(batchsize),在network中操作的话,若有4张显卡,则返回到train函数中的size就变成了16。应在train函数进行torch.mean(tensor).expand(batchsize)操作。

PyTorch模型转换成MindSpore可以让你在MindSpore环境使用已经训练好的.pt模型进行推理。以下是大致步骤: 1. **安装MindSpore**: 首先需要确保你已经在机器上安装了MindSpore框架。 2. **加载PyTorch模型**: 使用`torch.jit.load()`函数加载保存的.pt模型。例如: ```python import torch model = torch.jit.load('your_model.pth') ``` 3. **模型转 MindSpore**: PyTorch模型通常是以动态图的形式存在,而MindSpore更偏向于静态图。你可以尝试使用` mindspore.nn.Module`包装该模型并将其转化为静态图形式。这可能涉及到一些手动调整,比如把Sequential结构转换为MindSpore的Operation列表。 4. **创建MindSpore数据流水线**: 将输入数据预处理转换为MindSpore的数据类型,并构建一个DataLoader用于数据迭代。 5. **推理**: 创建一个MindSpore的Inferencer,然后通过它运行数据集来获取预测结果。例如: ```python from mindspore import Tensor, context, nn context.set_context(device_target="CPU") # 或者GPU class TorchToMSModel(nn.Cell): def construct(self, x): return self.pytorch_model(x) ms_model = TorchToMSModel(model) data_loader = ... # MindSpore数据加载器实例 for inputs in data_loader.create_dict_iterator(): output = ms_model(Tensor(inputs['input_data'])) ``` 请注意,由于两框架底层机制的不同,完全无缝转换可能不容易实现,特别是涉及复杂网络架构和动态计算的部分。在实际操作时,可能需要查看官方文档或社区教程以找到最适合的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值