Origin使两张图重叠展示在一张图上

该文章详细介绍了如何将两张图表的坐标轴调整一致,然后去除一个图的非曲线元素,通过复制和粘贴方法将图形叠加,最后调整位置以达到合并效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、先将两张图的坐标轴修改为相同。

2、删去其中一个图的图例、坐标轴等,仅保留曲线。左轴和下轴的刻度线标签、轴线和刻度线均把显示关闭。并用Delete删去坐标轴名称。

3、选中图形,Ctrl+C复制。切换到另一个图形处,Ctrl+V粘贴。并将对应外框移动到重合位置。

4、结果展示。


先展示结果:

步骤:

1、先将两张图的坐标轴修改为相同。

2、删去其中一个图的图例、坐标轴等,仅保留曲线。左轴和下轴的刻度线标签、轴线和刻度线均把显示关闭。并用Delete删去坐标轴名称。

3、选中图形,Ctrl+C复制。切换到另一个图形处,Ctrl+V粘贴。并将对应外框移动到重合位置。

4、结果展示。

### 科研绘中的折线绘制方法 对于科研绘而言,`Matplotlib` 和 `Seaborn` 是两个非常流行的 Python 库,它们都适合用来绘制高质量的折线。 #### 使用 Matplotlib 绘制折线 Matplotlib 提供了丰富的接口来定制化表的各种细节。下面是一个简单的例子展示了如何使用 Matplotlib 来创建一个基础版本的折线: ```python import matplotlib.pyplot as plt # 数据准备 x_values = [0, 1, 2, 3, 4] y_values = [0, 2, 1, 3.5, 1] plt.figure(figsize=(8, 6)) plt.plot(x_values, y_values, marker='o', linestyle='-', color='blue') plt.title('Simple Line Plot Example with Matplotlib') plt.xlabel('X Axis Label') plt.ylabel('Y Axis Label') plt.grid(True) # 显示像 plt.show() ``` 这段代码会生成一张带有标题、坐标轴标签以及网格线的基础折线[^1]。 #### 利用 Seaborn 进一步美化折线 虽然 Matplotlib 功能强大,但是配置较为繁琐;相比之下,Seaborn 基于 Matplotlib 构建,在保持灵活性的同时简化了许多常见的绘操作,并且内置了一些美观的主题风格。这里给出一段基于 Seaborn 的折线绘制实例: ```python import seaborn as sns import pandas as pd sns.set_theme(style="darkgrid") data = {'time': ['Mon', 'Tue', 'Wed', 'Thu', 'Fri'], 'value': [7, 9, 5, 8, 6]} df = pd.DataFrame(data=data) fig, ax = plt.subplots(figsize=(8, 6)) sns.lineplot(x='time', y='value', data=df, markers=True, dashes=False) ax.set_title('Enhanced Line Chart Using Seaborn') plt.tight_layout() # 自动调整布局以防止重叠 plt.show() ``` 此段脚本不仅实现了数据可视化,还应用了更精致的设计元素,使得最终得到的表更吸引眼球[^3]。 #### Pandas DataFrame 中 plot 方法的应用 当处理结构化的表格型数据集时,Pandas 的 `DataFrame` 类提供了一个便捷的方法——`.plot()` ,可以直接调用并快速生成所需的形,默认即为折线形式。这特别适用于那些希望减少编码量但仍需获得良好视觉效果的研究者们。 ```python import numpy as np import pandas as pd dates = pd.date_range(start='2023-01-01', periods=6) values = np.random.rand(6) df = pd.DataFrame({'Date': dates, 'Value': values}) line_plot = df.plot(kind='line', x='Date', y='Value', title='Line Plot from DataFrame', xlabel='Dates', ylabel='Random Values') plt.show() ``` 上述代码片段说明了怎样借助 Pandas 的力量迅速构建起一条反映随机数值变化的时间序列曲线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西西与东东

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值