[Transformer] Attention注意力中的位置编码

绝对位置编码

vit使用的就是固定的位置编码,是一个形状为 (num_of_patches + 1, embed_dim) 的可学习的 tensor。

如果预训练的时候 num_of_patches = 16 * 16,下游任务需要 num_of_patches = 32 * 32,那么可以采用二维插值。

  • 注意,第一个cls_token可以不参与二维插值。

相对位置编码

swin_transformer用的就是相对位置编码,在window attention里面也叫relative position bias

相对位置编码是加在 attention 上面的 (即 softmax(q * k / sqrt(dim) + pos_bias) 的输出)

可以理解为对于某一些位置,相对位置编码可以加强他们的相对联系。

具体可以看 SwinTransformerV2WindowAttention 的实现。

class WindowAttention(nn.Module):
    r""" Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.

    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
    """

    def __init__(
            self,
            dim: int,
            window_size: Tuple[int, int],
            num_heads: int,
            qkv_bias: bool = True,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            pretrained_window_size: Tuple[int, int] = (0, 0),
    ) -> None:
        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.pretrained_window_size = pretrained_window_size
        self.num_heads = num_heads

        self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))))

        # mlp to generate continuous relative position bias
        self.cpb_mlp = nn.Sequential(
            nn.Linear(2, 512, bias=True),
            nn.ReLU(inplace=True),
            nn.Linear(512, num_heads, bias=False)
        )

        # get relative_coords_table
        relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0]).to(torch.float32)
        relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1]).to(torch.float32)
        relative_coords_table = torch.stack(ndgrid(relative_coords_h, relative_coords_w))
        relative_coords_table = relative_coords_table.permute(1, 2, 0).contiguous().unsqueeze(0)  # 1, 2*Wh-1, 2*Ww-1, 2
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
        relative_coords_table *= 8  # normalize to -8, 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            torch.abs(relative_coords_table) + 1.0) / math.log2(8)

        self.register_buffer("relative_coords_table", relative_coords_table, persistent=False)

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(ndgrid(coords_h, coords_w))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        self.register_buffer("relative_position_index", relative_position_index, persistent=False)

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(dim))
            self.register_buffer('k_bias', torch.zeros(dim), persistent=False)
            self.v_bias = nn.Parameter(torch.zeros(dim))
        else:
            self.q_bias = None
            self.k_bias = None
            self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, self.k_bias, self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv.unbind(0)

        # cosine attention
        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(self.logit_scale, max=math.log(1. / 0.01)).exp()
        attn = attn * logit_scale

        relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
        relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
        relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            num_win = mask.shape[0]
            attn = attn.view(-1, num_win, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

当然,如果预训练和下游任务的patch数量不同,也是可以通过设置 pretrain_window_size 来调整的。其原理是预训练已经训练好 cpb_mlp这个mlp网络在 [0, pretrain_window_size] 之间的值了,只需要输入二维坐标,就能计算 multi_heads 个相对位置编码。但是 (pretrain_window_size, current_window_size] 之间的值没有经过训练,使用的还是之前的MLP映射(估计也没啥问题,这个cpb_mlp思想真牛)。

除了计算 relatetive_coords_table 时有不同,经过 cpb_mlp 之后,都变成了格式统一的 relateuve positional bias。十分方便,通过一个 cpb_mlp 的中间层来学习位置编码的映射,从而不需要学习死板的tensor作为位置编码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值