大题在2-5章,其他章节记重要名词和重要算法。
(eg.遗传算法步骤,专家系统组成及各部分功能,PSO算法和蚁群算法)
五.搜索求解策略
1.搜索的定义:按照一定策略或规则从知识库中寻找可利用的知识构造,解决问题的推理路线的过程。
搜索的方向:
- 数据驱动:从初始状态出发的正向搜索。
- 目的驱动:从目的状态出发的逆向搜索。
- 双向搜索。两个方向同时进行。
盲目搜索:在不具有对特定问题的任何有关信息的条件下,按固定的步骤(依次或随机调用操作算子)进行的搜索。
启发式搜索:考虑特定问题领域可应用的知识,动态地确定调用操作算子的步骤,优先选择较适合的操作算子,尽量减少不必要的搜索,以求尽快地到达结束状态。
2.状态空间表示法
状态空间
状态集合/操作算子的集合/包含问题的初始状态/包含问题的目的状态
求解路径:从S0 结点到S结点的路径。
状态空间的一个解:有限的操作算子序列。
3.八数码问题(重排九宫格)
状态空间:所有的摆法,数目为9!
操作集合:将空格向上下左右移动4个。
有向图描述:
如果S10为目标状态,那么O2,O6,O10就是一个解。
4.盲目的图搜索策略
图搜索思想:
- 问题初始状态作为当前状态,选择算符进行操作,生成子状态,检查目标状态是否出现。
- 若出现,则搜索成功,找到问题解;
- 否则,从已生成状态中再选一个状态作为当前状态。
- 重复上述过程,直到目标状态出现或不再有可供操作状态及算符(操作)为止。
数据结构:OPEN表、CLOSED表
- OPEN表:记录待扩展的节点
用于存放刚生成的节点作为待考察对象。
“有进有出”动态数据结构。
节点进入OPEN表的顺序由搜索策略决定。
- CLOSED表:记录已扩展的节点
存放将要扩展或已经扩展的节点,记录求解信息。
“有进无出”动态数据结构。
当前节点进入closed表的最后。
- 回溯策略:从初始状态出发,不停地、试探性地寻找路径,直到它到达目的或“不可解结点”,即“死胡同”为止。若它遇到不可解结点就回溯到路径中最近的父结点上,查看该结点是否还有其他的子结点未被扩展。若有,则沿这些子结点继续搜索;如果找到目标,就成功退出搜索,返回解题路径。
回溯搜索算法
(1)PS(path states)表:保存当前搜索路径上的状态。
(2)NPS(new path states)表:新的路径状态表。
(3)NSS(no solvable states)表:不可解状态集。
- 宽度优先搜索策略BFS:
数据结构:
OPEN表(NPS表):已经生成出来但其子状态未被搜索的状态。
CLOSED表( PS表和NSS表的合并):记录了已被生成扩展过的状态。
搜索次序:
宽度优先搜索算法的OPEN表是队列结构,后进先出。
- 深度优先搜索策略DFS:
深度优先搜索算法的OPEN表是堆栈结构,后进先出。
两个例题重点看!!!
5.启发式图搜索策略
启发式策略:利用与问题有关的启发信息进行搜索。
关键:如何寻找一个h(n)构造f(n),以f(n)大小来排列待扩展状态,以最小者进行扩展。
估价函数(evaluation function):估算节点“希望”程度的量度。
g(n):从初始节点 S0 到节点 n 的实际代价 ;
h(n):从节点 n 到目标节点 Sg 的最优路径的估计代价,称为启发函数。
A搜索算法
在图搜索算法中,如果能在搜索的每一步都利用估价函数
对open表中的节点(带扩展的节点)进行评价、排搜索次序,则该搜索算法为A算法。
A*算法
A*算法能保证一定能找到一条最短路径。
限制:
g(n)是对最小代价g*(n)的估计,且g(n) ≥g*(n)
h(n)是最小代价h*(n)的下界,即对任意节点n均有h(n) ≤h*(n)。
六.智能计算及其应用
1.受自然界和生物界规律的启迪,人们根据其原理模仿设计了许多求解问题的算法,包括人工神经网络、模糊逻辑、遗传算法、DNA计算、模拟退火算法、禁忌搜索算法、免疫算法、膜计算、量子计算、粒子群优化算法、蚁群算法、人工蜂群算法、人工鱼群算法以及细菌群体优化算法等,这些算法称为智能计算也称为计算智能
2.进化算法EA:是基于自然选择和自然遗传等生物进化机制的一种搜索算法,包括遗传算法,遗传规划,进化策略,进化规划。通过选择、重组(交叉)和变异这三种操作实现优化问题的求解。
5个设计原则
- 适用性原则
- 可靠性原则
- 收敛性原则
- 稳定性原则
- 生物类比原则
3.遗传算法(GA):借鉴生物界自然选择和自然遗传机制的随机搜索算法。
遗传算法的步骤(20级考题简答)
基本思想:在求解问题时从多个解开始,然后通过一定的法则进行逐步迭代以产生新的解。
1965霍兰德首次提出遗传算法。
基本要素:
- 参数编码(遗传编码)
- 初始群体的设定(初始化种群)
- 适应度函数的设计
- 遗传操作设计(选择、交叉、变异)
- 控制参数设定(算法参数)
编码
- 位串编码
一维染色体编码方法:将问题空间的参数编码为一维排列的染色体的方法。
二进制编码:用若干二进制数表示一个个体,将原问题的解空间映射到位串空间 B={0,1}上,然后在位串空间上进行遗传操作。
Gray编码:将二进制编码通过一个变换进行转换得到的编码。
- 实数编码
采用实数表达法不必进行数制转换,可直接在解的表现型上进行遗传操作。
- 多参数级联编码
把每个参数先进行二进制编码得到子串,再把这些子串连成一个完整的染色体。
种群规模一般取20-100,模式定理表明:若群体规模为M,则遗传操作可从这M的三次个个体中生成和检测 个模式,并在此基础上能够不断形成和优化积木块,直到找到最优解。
适应度函数:区分群体中个体好坏的标准。
适应度函数尺度变换(定标):对适应度函数值域的某种映射变换。
线性变换
幂函数变换法:
指数变换法:
- 欺骗问题:将所有妨碍适应度值高的个体产生,从而影响遗传算法正常工作的问题统称为欺骗问题
- 过早收敛:缩小这些个体的适应度,以降低这些超级个体的竞争力。
- 停滞现象:改变原始适应值的比例关系,以提高个体之间的竞争力。
4.选择操作:从当前群体中按照一定概率选出优良的个体,使它们有机会作为父代繁殖下一代子孙。(个体适应度越高,其被选择的机会就越多。 )
交叉:
部分匹配交叉PMX
变异:
可行调度:
A:784|239|165
B:891|567|243
5.遗传算法的改进
(1)双倍体遗传算法
采用显性和隐性两个染色体同时进行进化。
(2)双种群遗传算法
使用多个种群同时进化,交换种群之间最好个体所携带的遗传信息。
(3)自适应遗传算法AGA
交叉概率和变异概率可以随适应度自动改变
6.粒子群优化算法PSO
基本原理:PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个“极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解称为个体极值。另个一是整个种群目前找到的最优解,
7.蚁群算法 一种应用于组合优化问题的启发式搜索算法。
要知道信息素挥发度,过大和减小都会负面影响算法性能。
七.专家系统与机器学习
1.专家系统:一类包含知识和推理的智能计算机程序 。
2.专家系统的特点
(1)具有专家水平的专业知识。
(2)能进行有效的推理。
(3)启发性。
(4)灵活性。
(5)透明性。
(6)交互性。
3.专家系统与传统程序的最大区别:专家系统是依据知识和推理来求解
4.专家系统的组成(六部分)
5.知识获取
过程:抽取知识、知识的转换、知识的输入、知识的检测 。
模式:非自动知识获取、自动知识获取、半自动知识获取。
6.机器学习使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。
学习系统:一个学习系统一般应该有环境、学习、知识库、执行与评价等四个基本部分组成。
7.机器学习按学习能力分类:
强化学习(激励学习/再励学习/增强学习-评价反馈
监督学习-响应反馈
非监督学习(无教师学习)-无反馈
8.示例学习:从例子中学习
指导式学习:向系统提供一般性的指示或建议进行学习
机械式学习:通过直接记忆或者存储外部环境所提供的信息达到学习的目的
9.知识发现:KDD,从数据库中发现知识。
知识发现过程分为3步:数据准备(数据选取、数据预处理和数据变换)、数据挖掘以及结果的解释评估。
知识发现方法:统计方法,粗糙集,可视化,传统机器学习方法
聚类:根据数据的不同特征,将其划分为不同的类。
分类:提出一个分类函数或分类模型
10.专家系统的开发步骤。
11.专家系统的开发工具:
通用知识表达语言OPS5。OPS5的组成:产生式规则库、推理机、数据库。
程序设计语言:PROLOG语言,LISP语言
八. 人工神经网络及其应用
1.人工神经网络ANN是一个用大量简单处理单元经广泛连接而组成的人工网络,是对人脑或生物神经网络若干基本特性的抽象和模拟。
2.决定人工神经网络性能的三大要素:
- 神经元的特性。
- 神经元之间相互连接的形式——拓扑结构。
- 为适应环境而改善性能的学习规则。
神经网络的结构有前馈型和反馈型;工作方式有同步和异步
神经网络知识表示是一种隐式的表示方法。
Hebb学习规则:当某一突触两端的神经元同时处于兴奋状态,那么该连接的权值应该增强。
神经元的数学模型(三部分):加权求和,线性动态系统,非线性函数映射。
4.BP神经网络(多层前向网络)(输入层、隐层、输出层)
层与层的连接是单向的,信息的传播是双向的。
BP学习算法:
正向传播:输入信息由输入层传至隐层,最终在输出层输出。
反向传播:修改各层神经元的权值,使误差信号最小。
5.Hopfield神经网络 是单层全互联反馈神经网络,每个神经元互相连接。
- 离散型Hopfield神经网络
- 连续型Hopfield神经网络及其VLSI实现
- 随机神经网络
6.卷积神经网络 是深度学习的基础
4个关键技术:局部连接,权值共享,多卷积核,池化。
卷积运算(乘积之和):
7.生成对抗网络GAN使用对抗训练机制对两个神经网络进行训练
最成功的领域:计算机视觉
九.智能体与多智能体系统
1.智能体(Agent)是一个程序或者一个实体,它嵌入在环境中,通过传感器(sensors)感知环境,通过效应器(effectors)自治地作用于环境并满足设计要求。(Agent看做人,眼睛耳朵为传感器,手脚嘴为效应器)
体系结构:反应/慎思/复合
特性:自主性,反应性,社会性,进化性
2.智能体的结构:接受传感器的输入,然后运行Agent程序,并把执行的结果传送到效应器进行动作。
结构的分类:反应式体系结构、慎思式体系结构和混合式体系结构。
Agent=体系结构+程序
3.多智能体系统MAS:多个智能体构成的系统。
MAS的体系结构:网络结构,联盟结构,黑板结构
MAS的基本类型:BDI模型,协商模型,协作规划模型,自协调模型
MAS的通信过程:
- 发送方将自己的思想翻译成通信所用语言的格式;
- 发送方将语言格式加载到通信传播媒体,如声音、文字和图像;
- 传播载体到达接收方;
- 接收方读取载体中的语言代码;
- 接收方在思维空间中将语言代码按其格式翻译为思想,从而熟悉发送方的意识状态。
MAS的通信类型:Tell和Ask,形式语言
通信方式:黑板系统(知识源,黑板,监控机制)和消息/对话系统
通信语言:知识交换格式语言KIF和知识查询操纵语言KQML
MAS的协调协作协商