AcWing贪心

文章介绍了几种处理区间问题的算法,包括基于右端点排序的区间选点,寻找最大不相交区间数量,以及区间分组策略,利用小根堆优化。同时,还展示了如何使用哈夫曼树解决合并果子的问题,涉及堆数据结构和贪心算法的应用。
摘要由CSDN通过智能技术生成

区间问题

区间选点

在这里插入图片描述
思路
区间问题,可以先将区间进行排序,假设以区间右端点进行排序
在这里插入图片描述
接着依次遍历每一个区间,

  • 如果当前区间已经包含点,跳过这一步 ed > range[i].l
  • 否则,选择当前区间的右端点 ed < range[i].l, res++, ed=range[i].r
    代码
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100010;
struct Range
{
    int l, r;
    bool operator< (const Range &w)const
    {
        return r < w.r;
    }
} range[N];

int main()
{
    int n;
    cin >> n;
    
    for (int i = 0; i < n; i++)
    {
        int l, r;
        cin >> l >> r;
        range[i] = {l, r};
    }
    
    // 初始化
    int res = 0, ed = -2e9;
    
    sort(range, range + n);
    for (int i = 0; i < n; i++)
    {
        if (range[i].l > ed)
        {
            res++;
            ed = range[i].r;
        }
    }
    
    cout << res << endl;
    
    return 0;
}

最大不相交区间数量

在这里插入图片描述
思路:
本题与上题思路类似,区间选点,要求选择特定的点覆盖所有区间,不同点分属于不相交的区间,因此可以用区间选点的方式进行求解。
代码:
以左端点排序

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100010;
struct Range
{
    int l, r;
    bool operator< (const Range &w)const
    {
        return l < w.l;
    }
} range[N];

int main()
{
    int n;
    cin >> n;
    
    for (int i = 0; i < n; i++)
    {
        int l, r;
        cin >> l >> r;
        range[i] = {l, r};
    }
    
    
    sort(range, range + n);
    int res = 1, ed = range[0].r;
    for (int i = 0; i < n; i++)
    {
        if (range[i].l > ed)
        {
            res++;
            ed = range[i].r;
        }
        else ed = min(ed, range[i].r);
    }
    
    cout << res << endl;
    
    return 0;
}

以右端点排序

#include <iostream>
#include <algorithm>
using namespace std;

const int N = 100010;
struct Range
{
    int l, r;
    bool operator< (const Range &w)const
    {
        return r < w.r;
    }
} range[N];

int main()
{
    int n;
    cin >> n;
    
    for (int i = 0; i < n; i++)
    {
        int l, r;
        cin >> l >> r;
        range[i] = {l, r};
    }
    
    int res = 0, ed = -2e9;
    
    sort(range, range + n);
    for (int i = 0; i < n; i++)
    {
        if (range[i].l > ed)
        {
            res++;
            ed = range[i].r;
        }
    }
    
    cout << res << endl;
    
    return 0;
}

区间分组

在这里插入图片描述
思路:
区间问题,按照左端点进行排序。用一个小根堆维护每一个分组中最大的右端点。
在这里插入图片描述

如果堆空,或者当前区间的左端点小于分组区间右端点的最小值,如上图1,则开辟一个新区间,也就是上该区间的右端点入堆。否则,更新右端点,如图2.
代码

#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;

const int N = 100010;
struct Range
{
    int l, r;
    bool operator< (const Range &w)const
    {
        return l < w.l;
    }
}range[N];

int main()
{
    int n;
    scanf("%d", &n);
    
    for (int i = 0; i < n; i++)
    {
        int l, r;
        scanf("%d%d", &l, &r);
        range[i] = {l, r};
    }
    
    sort(range, range + n);
    
    //小根堆维护每一个分组区间的右端点
    priority_queue<int, vector<int>, greater<int>> heap;
    for (int i = 0; i < n; i++)
    {
        // 如果堆空,或者当前区间左端点小于分组区间右端点的最小值,有冲突,则再开辟一个分组
        if (heap.empty() || heap.top() >= range[i].l) heap.push(range[i].r);
        // 如果不冲突,则更新当前组右端点
        else 
        {
            heap.pop();
            heap.push(range[i].r);
        }
    }
    
    printf("%d", heap.size());
    return 0;
}

Huffman树

合并果子

在这里插入图片描述
思路:
很容易想到哈夫曼树,每次选择两个最小数目相加,得一个新的数目,可以用小根堆来维护。

代码:

#include <iostream>
#include <queue>
using namespace std;

int main()
{
    int n;
    cin >> n;
    
    priority_queue<int, vector<int>, greater<int> > heap;
    
    while (n--)
    {
        int x;
        cin >> x;
        heap.push(x);
    }
    
    int res = 0;
    
    while (heap.size() > 1)
    {
        int a = heap.top();
        heap.pop();
        int b = heap.top();
        heap.pop();
        res += a + b;
        heap.push(a + b);
    }
    
    cout << res << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值