组合数的计算

本篇博客来自南昌理工学院acm集训队成员yyj

组合数

1.定义

组合数:从 n 个不同元素中每次取出 m 个不同元素 ,不管其顺序合成一组,称为从 n 个元素中不重复地选取 m 个元素的一个组合。所有这样的组合的种数称为组合数。

2.性质与描述

2.1写法

在线性写法中被写作C(n,m)。

组合数的计算公式为:
在这里插入图片描述

2.2性质

性质1.

从n个不同元素中取出m个元素的组合数 == 从n个不同元素中取出 (n-m) 个元素的组合数;
理解:
这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。
互补性质

性质2:

组合恒等式 :
若表示在 n 个物品中选取 m 个物品,则如存在下述公式:

C(n,m)=C(n,n-m)=C(n-1,m-1)+C(n-1,m)。

关于其数学证明可以看:这篇文章
dp证明:(帅哥美女必会)
如果学过一点点dp的帅哥美女都知道利用dp思想来解决问题
ex:

状态表示:
c[i][j]表示在i个物品里选j个的选法总数;

那么选的状态:选这个物品 或者 不选 

选第j个物品的总数为:c[i-1][j];
不选第j个物品的总数为:c[i-1][j-1];(就是从前j-1个物品里选)

那么状态方程可以表示为:
c[i][j]=c[i-1][j-1]+c[i-1][j];

3.代码运用与解释:

3.1说明:

在学习算法的过程中注意数据范围十分重要的,重要到就像有多少钱取什么样的老婆,在算法过程中数据范围越大,你的钱越少,挑老婆的余地也越少,那么使用的方法也就越难。接下来作者本人就带你学习一下。

3.2四大方法(有多少钱就选什么样的老婆):

描述:
有a个物品,挑b个物品问有几种选法,询问n次。

(1):1<=b<=a<=2000,10万次询问。

解法:先预处理一下(递推),把所有答案都预处理出来,然后直接询问出答案。

处理方式:运用的组合恒等式 双重循环,dp求解。

代码如下:

// c[a][b] 表示从a个中选b个的方案数
for (int i = 0; i < N; i ++ )
    for (int j = 0; j <= i; j ++ )
        if (!j) c[i][j] = 1;
        else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;

时间复杂度为:O(a^2);

(2).1<=a<=b<=100000,1万次询问,答案太大 需要mod 1e9+7。

解法:利用逆元求解
简单了解一下逆元:设x为a的逆元,那么有x*a(mod p)== 1;(a要和p互质
x称为a模上p的逆元,那么x可以理解为a的倒数。因为乘起来结果取模是一样的。

逆元的求法:运用费马小定理
a与p互质那么:b^(p-1)mod§==1。
把b^(p-1)拆开来:b * b ^(p-2).
那么b ^(p-2)就相当于x了,即为b的逆元。

但是还是有很多细节需要注意,p可能太大了,需要快速幂来求解

在这里插入图片描述

看代码:

#include<iostream>
using namespace std;
const int N=1e5+10,mod=1e9+7;;
long long f[N],nf[N];
int ksm(int a,int b,int p)    //快速幂
{
    long long res=1;
    while(b)
    {
        if(b&1)res=res*a%p;
        a=(long long)a*a%p;
        b>>=1;
    }
    return res;
}
int main()
{
    f[0]=nf[0]=1;                    //0!=1,f[i]为i的阶层,nf为逆元
    for(int i=1;i<=N;i++)
    {
        f[i]=f[i-1]*i%mod;
        nf[i]=nf[i-1]*ksm(i,mod-2,mod)%mod;   //快速幂求逆元
    }
    int t;
    cin>>t;
    while(t--)
    {
        int a,b;
        cin>>a>>b;
        printf("%lld\n",f[a]*nf[a-b]%mod*nf[b]%mod);
    }
    return 0;
}

(3).1<=b<=a<=1e^18,1<=p<=1e5;

在此引入卢卡斯定理:
若p是质数,则对于任意整数 1 <= m <= n,有:
C(n, m) = C(n % p, m % p) * C(n / p, m / p) (mod p)

#include<iostream>
using namespace std;

long long ksm(long long a,long long b,long long p)
{
    long long res=1;
    while(b)
    {
        if(b&1)res=res*a%p;
        a=a*a%p;
        b>>=1;
    }
    return res;
}
long long C(long long a,long long  b,long long p)
{
    long long res=1;
    for(int i=1,j=a;i<=b;i++,j--)      
    {
        res=res*j%p;
        res=res*ksm(i,p-2,p)%p;       //至于为什么,自己想。或者是看下面的解释
    }
    return res;
}

long long lucas(long long a,long long b,long long p)
{
    if(a<p&&b<p)return C(a,b,p);      //直接return
    else return C(a%p,b%p,p)*lucas(a/p,b/p,p)%p;   //因为a/p不一定比p小,所以还是需要调用一次
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        long long  a,b,p;
        cin>>a>>b>>p;
        cout<<lucas(a,b,p)<<endl;
    }
}

为什么可以这样求解 :
Cba=a!(a−b)!∗b!=a∗(a−1)∗(a−2)∗…∗(a−b+1)∗(a−b)∗…∗1/(a−b)∗(a−b−1)∗…∗1∗b!
=a∗(a−1)∗(a−2)∗…(a−b+1)/b!
分子一共有a-(a-b)项,也就是b项。所以直接分别求阶层即可。

(4).1<=a<=b<=5000,不取模

当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
1. 筛法求出范围内的所有质数
2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + …
3. 用高精度乘法将所有质因子相乘

#include<iostream>
using namespace std;
const int  N=5010;
bool str[N];
int prime[N],c[N],res[N],x;

void muli(int b)     //高精度
{
    int t=0;
    for(int i=1;i<=x;i++)
    {
        res[i]=res[i]*b+t;
        t=res[i]/10;
        res[i]=res[i]%10;
    }
    while(t)
    {
        res[++x]=t%10;
        t=t/10;
    }
    while(res[x]==0&&x>0)x--;
}
int get(int a,int p)    //求质因子的个数a!中质因子为p的个数
{
    int t=0;
    while(a)
    {
        t+=a/p;
        a/=p;
    }
    return t;
}
int main()
{
    
    int a,b;
    cin>>a>>b;
    
    for(int i=2;i<=a;i++)
    {
        if(str[i]==0)
        for(int j=i+i;j<=a;j+=i)str[j]=true;     筛质数
    }
    for(int i=2;i<=a;i++)
    {
        if(!str[i])
        {
            c[i]=get(a,i);
        }
    }
    for(int i=2;i<=b;i++)
    {
        if(!str[i])
        {
            c[i]-=get(b,i);       //  减去b!的质因子
        }
    }
        for(int i=2;i<=a-b;i++)
    {
        if(!str[i])
        {
            c[i]-=get(a-b,i);            //  减去(a-b)!的质因子
        }
    }
    res[1]=1;
    x=1;    //x为位数
    for(int i=2;i<=a;i++)
    {
        for(int j=1;j<=c[i];j++)
        {
            muli(i);
        }
    }
    for(int i=x;i>=1;i--)printf("%d",res[i]);
    return 0;
}

作者有话说:
基础打得好学到后面你自然学的就快,切莫狂妄自大,学习组合数运用到了很多知识点:
快速幂,高精度,筛法筛质数,逆元,费马小定理,卢卡斯定理,dp原理,只有拥有砸肆的基础才能走得更高。

话不多说,认真学习的帅哥有奖励:给你们看看漂亮小姐姐:
请添加图片描述

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值