python: 基于种群模拟退火算法解决单目标优化(试用于任意维的测试函数)

本文介绍了模拟退火算法在单目标优化问题中的应用,包括算法原理、模拟测试过程以及代码实现。针对高维优化问题,提出引入种群概念以增加多样性,提高算法精度。通过一元和多元函数的模拟测试,展示了算法的效果,并指出在多元函数中需要对算法进行改进以提升性能。
摘要由CSDN通过智能技术生成

模拟退火算法是一种常见的演化算法之一,在单目标优化中有着不错的效果,适合我们将其应用在路径优化、数值模拟、参数优化等研究中。

首先,我们来了解一下模拟退火算法的原理步骤(该原理步骤是基于无种群思想)

模拟退火算法的原理:

 输入:温度T、退火控制参数k、初始点x0

输出:最优的自变量值、最大/最小值

(1)给定初始值温度T,退火控制参数k,初始点x0(该点为随机选择点),并计算f(x0)

(2)随机产生扰动r=(2*rand-1)*delt;新店x1=x0+r,同时计算f(x1)、f(x1)-f(x0)

 (3) Metropolis准则,若f(x1)-f(x0)>0,接受该点(更新x0),且接受概率为p=exp(-(f(x1)-f0)/T),若p>r(r为0-1上的随机数),接受该点(更新x0),否则放弃该点

(4)执行降温操作:T=T*k;返回(2)继续

(5)执行上述步骤,结束
 

但是面对多维的单目标测试函数时,很多人就不知道

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秋刀鱼程序编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值